
Journal of Computational Physics 443 (2021) 110522
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A conservative high-order method utilizing dynamic

transfinite mortar elements for flow simulations on curved

nonconforming sliding meshes

Bin Zhang ∗,1, Chunlei Liang

Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 17 June 2021

Keywords:
High-order method
Nonconforming mesh
Sliding mesh
Polynomial mortar
Transfinite mortar

We introduce two concepts in this work: polynomial mortar and transfinite mortar,
and apply them to curved nonconforming sliding meshes. It is shown that, on curved
meshes, polynomial mortar always carries geometric errors while transfinite mortar has
no such errors, which makes the latter superior to the former in almost every aspect. For
example, the latter has better accuracies and introduces smaller numerical disturbances.
The proposed sliding-mesh method utilizing transfinite mortar is conservative, arbitrarily
high-order accurate in space, retains the order of accuracy of a time marching scheme,
does not change flow characteristics, and has minimum sliding-speed effects. It is by far
the most accurate and most thoroughly studied sliding-mesh method. This method can be
extended and applied to a wide range of flow problems, such as propellers, wind turbines,
stirred tanks, etc.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Sliding-mesh methods have been widely used in flow simulations about moving objects. For example, they are ideal
choices for handling rotational geometries such as stirred tanks [1] and helicopter rotor blades [2]. They can also be used
to ensure good mesh qualities in circumstances where purely deforming mesh may otherwise be very skewed, such as
simulations of oscillating wings [3] and vortex-induced-vibration devices [4]. In many applications, a sliding mesh method
has advantages over other methods such as overset mesh methods [5] and immersed boundary methods [6] for its simplicity,
efficiency and accuracy. However, so far, sliding mesh methods are still mostly limited to low-order (second order and below)
schemes that are unfavorable for simulating vortex dominated flows due to large numerical dissipations and dispersions.

Tremendous progress has been made on high-order methods in the past decades in the computational fluid dynamics
community [7]. For instance, such methods include the discontinuous Galerkin (DG) method [8,9], the spectral element
method [10–12], the spectral volume method [13,14], the spectral difference (SD) method [15–19], to name just a few.
Among these methods, the SD method solves equations in differential form directly, and is one of the most efficient high-
order methods. Recently, the ideas of collocating solution and flux points of the SD method and correcting fluxes using
higher-degree polynomials have led to an even more efficient high-order method — the flux reconstruction (FR) method
[20,21], also known as the correction procedure via reconstruction (CPR) method [22]. Besides its better efficiency, by

* Corresponding author.
E-mail address: bzh@gwmail.gwu.edu (B. Zhang).

1 Present address: Clarkson University, Potsdam, NY 13699, USA.
https://doi.org/10.1016/j.jcp.2021.110522
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110522
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110522&domain=pdf
mailto:bzh@gwmail.gwu.edu
https://doi.org/10.1016/j.jcp.2021.110522

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
choosing different correction polynomials, the FR method can recover many existing high-order schemes such as DG and
SD, and can even produce new schemes that were never reported before. The stability of the FR method has been proved
in [23]. The most recent developments on the FR method are summarized in [24].

With more and more applications of high-order methods to flow simulations than ever before, there is a natural need to
extend the sliding mesh concept to high-order methods to tackle complex flow problems such as those mentioned above.
Ferrer and Willden [25] developed a high-order sliding-mesh DG method based on modal basis functions for simulating
incompressible flow problems. Ramírez et al. [26] applied moving-least-squares stencils to the development of a high-
order sliding-mesh finite volume method. The authors of the present work extended the straight stationary mortar concept
[27–29] to a curved dynamic mortar concept and developed a simple and efficient high-order sliding-mesh SD method
[30], and also extended this method to sliding-deforming meshes [31] and to handle 3D geometries [32]. These methods,
however, require uniform mesh on a sliding interface, which restricts mesh generation. Our recent efforts have completely
lifted this restriction, and the resulting general nonuniform sliding-mesh method has been demonstrated on the FR method
[33] and the SD method for hybrid grids [34]. These methods have also been successfully applied to several flow problems.
For example, flows over rotating cylinders of different cross-sectional shapes [35], flapping wing for energy harvesting [36],
and more recently the first high-order eddy-resolving simulation of flow over a marine propeller [37]. The dynamic mortar
concept has also been applied to automatic mesh refinement for shock capturing on dynamic meshes [38].

Our initial effort in [33] showed that the reduction of geometric errors can potentially make a sliding-mesh method
arbitrarily high-order accurate. In this work, we further the investigation to give two new concepts and to provide a more
in-depth study on: the spatial and temporal accuracies, the conservation property, the outflow property, the free-stream
preservation property, the sliding speed effects, the singularity issue, and the capability of handling multiple objects at the
same time. Meanwhile, detailed implementation steps and extension to 3D are also discussed in this work.

The rest of this paper is organized as follows. In Section 2, we briefly describe the equations that are going to be solved
numerically. Sections 3 and 4 present the numerical methods, including the FR method, the new concepts, and the sliding-
mesh method. Verifications and applications are reported in Section 5. Finally, Section 6 concludes this paper.

2. The flow equations

We numerically solve the two-dimensional Navier-Stokes equations in the following conservative form,

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂ y
= 0, (1)

where Q is the vector of conservative variables; F and G are the flux vectors in the x- and the y-direction, respectively.
Their expressions are

Q = [ρ ρu ρv E]T, (2)

F = Finv(Q) + Fvis(Q,∇Q), (3)

G = Ginv(Q) + Gvis(Q,∇Q), (4)

where ρ is fluid density, u and v are the Cartesian velocity components, and E is the total energy per volume defined as

E = p

γ − 1
+ 1

2
ρ(u2 + v2), (5)

where p is pressure, and γ is the ratio of specific heats and is set to 1.4 in this work for ideal gas. The inviscid and the
viscous flux vectors are

Finv =

⎡⎢⎢⎣
ρu

ρu2 + p
ρuv

(E + p)u

⎤⎥⎥⎦ , Ginv =

⎡⎢⎢⎣
ρv
ρuv

ρv2 + p
(E + p)v

⎤⎥⎥⎦ , (6)

Fvis = −

⎡⎢⎢⎣
0
τxx

τyx

uτxx + vτyx + κTx

⎤⎥⎥⎦ , Gvis = −

⎡⎢⎢⎣
0

τxy

τyy

uτxy + vτyy + κT y

⎤⎥⎥⎦ , (7)

where

τi j = μ(ui, j + u j,i) + λδi juk,k,

is the shear stress tensor, μ is the dynamic viscosity, λ = −2/3μ based on the Stokes’ hypothesis, δi j is the Kronecker delta,
κ is the thermal conductivity, and T is temperature which is related to density and pressure through the ideal gas law
2

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
p = ρRT , (8)

where R is the gas constant.
To deal with moving grid, we employ an arbitrary-Lagrangian-Eulerian (ALE) approach, and map a moving physical

domain to a fixed computational domain. Let (t, x, y) denote the physical time and space, and (τ , ξ, η) the computational
ones. Further assume that the mapping is: t = τ , x = x(τ , ξ, η), and y = y(τ , ξ, η). It can be shown that the flow equations
will take the following conservative form in the computational space

∂Q̃

∂t
+ ∂ F̃

∂ξ
+ ∂G̃

∂η
= 0, (9)

where Q̃, ̃F, and G̃ are the computational solution vector and flux vectors, and they are related to the physical ones as

Q̃ = |J |Q, (10)

F̃ = (−xt yη + yt xη)Q + yηF − xηG, (11)

G̃ = (xt yξ − yt xξ)Q − yξ F + xξ G. (12)

Alternatively, let Q , F , F̃ , etc., each denote a component (at the same position) of the corresponding boldface vector, and
then the relations in (10)-(12) can be written in the following matrix form⎡⎣ Q̃

F̃
G̃

⎤⎦= |J |J −1

⎡⎣ Q
F
G

⎤⎦ , (13)

where J represents the Jacobian matrix, |J | is its determinant, and J −1 is the inverse Jacobian matrix. These metric terms
have the following expressions,

J = ∂(t, x, y)

∂(τ , ξ,η)
=
⎡⎣ 1 0 0

xτ xξ xη

yτ yξ yη

⎤⎦ , |J | = xξ yη − xη yξ , (14)

J −1 = ∂(τ , ξ,η)

∂(t, x, y)
=
⎡⎣ 1 0 0

ξt ξx ξy

ηt ηx ηy

⎤⎦= 1

|J |

⎡⎣ |J | 0 0
−xt yη + yt xη yη −xη

xt yξ − yt xξ −yξ xξ

⎤⎦ . (15)

3. Flux reconstruction method on moving grid

3.1. Grid mapping

The first step of the FR method is to map each physical grid element to a standard computational element. In the
present implementation, we discretize a computational domain into non-overlapping quadrilateral elements, and employ
the following iso-parametric mapping [39] to map each grid element to a unit square element (i.e., 0 ≤ ξ, η ≤ 1) in the
computational space,

x(t, ξ,η) =
[

x(t, ξ,η)

y(t, ξ,η)

]
=

K∑
i=1

Mi(ξ,η)

[
xi(t)
yi(t)

]
, (16)

where K is the total number of nodes used to approximate a physical element, Mi (see [39] for detailed expressions) and
(xi, yi) are the shape function and the coordinates of the i-th node, respectively. Fig. 1 is a schematic of the iso-parametric
representations of a curved physical element using different number of nodes. Higher-order elements (larger K ’s) obviously
represent curved boundaries more accurately. For this reason, high-order elements should be used along curved boundaries
for better accuracy.

3.2. Construction of solution and flux polynomials

Within each computational element, solution points (SPs) and flux points (FPs) are defined. The SPs are distributed along
each coordinate direction inside the element, and the FPs are distributed along the boundaries only. Fig. 2 is a schematic
of the distribution of these points for a third-order FR scheme. In this work, the N SPs/FPs in each direction of an N-th
order scheme are chosen as the roots of the N-th Legendre polynomial (namely, N Legendre points). At the SPs, Lagrange
interpolation bases are defined. For example, the basis at the i-th SP along the ξ direction is
3

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 1. Iso-parametric representation (black lines) of a curved element (gray lines): (a) K = 4 (linear), (b) K = 8 (quadratic), (c) K = 12 (cubic), (d) a com-
putational element (unit square).

Fig. 2. Schematic of the distribution of SPs (circular dots) and FPs (square dots) for a third-order (P = 2) FR scheme.

hi(ξ) =
N∏

s=1,s �=i

(
ξ − Xs

Xi − Xs

)
, (17)

where Xi and Xs are the ξ -coordinates of the i-th and the s-th SP, respectively. If we denote the space of all polynomials
of degrees less than or equal to N as PN , then hi ∈ PN−1. Moreover, the hi ’s are linearly independent and form a basis for
PN−1.

For a function φ defined within a mesh element, assume it is smooth (e.g., φ ∈ C∞) and has discrete values: φi j at (xi, y j)

that corresponds to (Xi, X j) in the computational space, where i, j = 1, 2, · · · , N . This function can then be approximated
by the following tensor-product polynomial in PN−1,N−1 = PN−1 ⊗ PN−1,

φ(ξ,η) =
N∑

j=1

N∑
i=1

φi jhi(ξ)h j(η), (18)

where the truncation error for the approximation is O(ξ N , ηN) based on Taylor series expansion.
Applying (18) to the solution and fluxes, we can obtain the following polynomial representations,

Q̃(ξ,η) =
N∑

j=1

N∑
i=1

Q̃i jhi(ξ)h j(η), (19)

F̃(ξ,η) =
N∑

j=1

N∑
i=1

F̃i jhi(ξ)h j(η), (20)

G̃(ξ,η) =
N∑

j=1

N∑
i=1

G̃i jhi(ξ)h j(η), (21)

where the ()i j ’s are the discrete values at the (i, j)-th SP in a standard element.
The polynomials in (19)-(21) are continuous within each element, but discontinuous across element interfaces (or bound-

aries). For this reason, common values need to be defined at the interfaces. For instance, the common solution is computed
as

Qcom = 1
(QL + QR), (22)
2

4

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
where QL and QR are the solution vectors on the left side and the right side of an interface, respectively.
To compute the common (normal) inviscid flux, we employ a Riemann solver, such as the following Rusanov solver [40]

with modification for moving mesh,

Fcom
inv = 1

2

[
(
↔
FL

inv +↔
FR

inv) · n − λ(QR − QL)
]− (vg · n)Qcom, (23)

where
↔
FL

inv = (FL
inv, G

L
inv) and

↔
FR

inv = (FR
inv, G

R
inv) are the inviscid flux vectors on the two sides of an interface; n = N/‖N‖ is

the unit normal vector with

N = (yη,−xη) or (−yξ , xξ) (24)

depending on which direction (i.e., ξ or η) the interface is mapped to; λ is the largest characteristic speed with the following
expression,

λ = |Vn| + c =
∣∣∣(1

2
(vL + vR) − vg

) · n
∣∣∣+ c, (25)

where vL = (uL, vL) and vR = (uR, vR) are flow velocities on the two sides of an interface; vg = (xt , yt) represents grid
velocity; c is the local speed of sound. The physical normal flux in (23) is converted to a computational one by multiplying
the magnitude of normal, i.e.,

F̃com
inv or G̃com

inv = ‖N‖Fcom
inv . (26)

The common viscous flux is calculated from the common solution and common gradient,

Fcom
vis = Fvis(Qcom, (∇Q)com), (27)

where the common gradient is the average of the left and the right values, i.e.,

(∇Q)com = ((∇Q)L + (∇Q)R)/2. (28)

The procedure for calculating ∇Q will be briefly discussed in the next section. The common viscous flux in (27) is converted
to a computational one in the same way as (26).

3.3. Flux reconstruction

The spatial derivatives in (9) reduce the two flux terms to PN−2,N−1 and PN−1,N−2, respectively, making them inconsis-
tent with the solution term which is in PN−1,N−1. To overcome this issue, the flux polynomials need to be reconstructed to
be at least PN,N−1 and PN−1,N .

To do this, we use higher degree correction functions/polynomials. The corrected/reconstructed fluxes take the following
forms,

F̂(ξ,η) = F̃(ξ,η) + [̃
Fcom(0, η) − F̃(0, η)

] · gL(ξ) + [̃Fcom(1, η) − F̃(1, η)] · gR(ξ), (29)

Ĝ(ξ,η) = G̃(ξ,η) + [̃Gcom(ξ,0) − G̃(ξ,0)] · gL(η) + [̃Gcom(ξ,1) − G̃(ξ,1)] · gR(η), (30)

where F̃(ξ, η) and G̃(ξ, η) are the original flux polynomials from (20) and (21); gL and gR are the left and the right
correction functions with degrees no less than N , and they are required to at least satisfy

gL(0) = 1, gL(1) = 0,

gR(0) = 0, gR(1) = 1,
(31)

which ensures that

F̂(0, η) = F̃com(0, η), F̂(1, η) = F̃com(1, η), (32)

Ĝ(ξ,0) = G̃com(ξ,0), Ĝ(ξ,1) = G̃com(ξ,1), (33)

i.e., the reconstructed fluxes still take the common values at cell interfaces. Huynh [20] proposed several correction func-
tions, and we employ the gDG correction function in this study.

Note that to calculate solution gradients consistently, the correction procedure is also applied to the solution polynomial
along each direction (only for calculating the gradients). In this way, the resulting gradient polynomials are in PN−1,N−1 as
well.
5

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
3.4. Time marching

With proper boundary conditions applied, the discretized equations can be written in the following residual form,

∂Q̃

∂t

∣∣∣∣
i j

= −
[

∂ F̂

∂ξ
+ ∂Ĝ

∂η

]
i j

= Ri j, i, j = 1,2, · · · , N, (34)

where Ri j is the residual at the (i, j)-th SP. This system can be time marched using either explicit or implicit schemes. In
this work, we employ several of the explicit strong stability preserving (SSP) Runge-Kutta schemes reported in [41–43] for
the purpose. Furthermore, in this work, all boundary conditions are weakly imposed to increase stability, and more details
can be found in, e.g., [15].

3.5. Free-stream preservation

Ideally, a moving grid should not disturb a flow field. The simplest situation is that a free-stream flow must stay constant
all the time on a moving grid. This is called free-stream preservation. By substituting a constant flow solution into the flow
equations in (9), we can get a system of equations that are purely about the geometrics, and are thus known as the
geometric conservation law (GCL) [44],

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂(|J |ξx)

∂ξ
+ ∂(|J |ηx)

∂η
= 0, (35)

∂(|J |ξy)

∂ξ
+ ∂(|J |ηy)

∂η
= 0, (36)

∂|J |
∂t

+ ∂(|J |ξt)

∂ξ
+ ∂(|J |ηt)

∂η
= 0. (37)

To numerically satisfy free-stream preservation, the same numerical schemes for discretizing the flow equations must be
applied to the GCL equations. Since the spatial discretization operator in the FR method is direct differentiation (which is
exact), and the geometric terms are from analytical mapping, the first two GCL equations are hence automatically satisfied.
But the third GCL equation generally can not be satisfied automatically. This problem comes from the temporal discretiza-
tion, for instance, a multiple-stage Runge-Kutta scheme, which is not exact. To overcome this issue, we treat |J | as an
unknown, and solve the third equation numerically for it. The numerical |J | is then used to update the physical solution
according to (10). In this way, the GCL is numerically satisfied, and free-stream preservation is ensured. Similar approach
was reported in, e.g., [45].

4. A nonconforming sliding-mesh method

In this section, we first introduce the concepts of sliding mesh and mortar element. Following that, the definitions of
polynomial mortar and transfinite mortar are given, with a more detailed discussion on the latter. The projection procedures
between cell faces and mortars are described subsequently. Implementation procedures are also provided for completeness.
Finally, the extension to 3D is discussed.

4.1. Sliding mesh and mortar elements

The complexity of a sliding mesh depends on the shape of the corresponding sliding interface. The two most funda-
mental yet most widely used sliding interfaces are the straight one and the circular one as illustrated in Fig. 3(a) and (b),
respectively. For simplicity, each sliding mesh in the figure only involves two non-overlapping subdomains. The subdomains
are allowed to have relative motions, resulting in dynamically nonconforming meshes. To ensure continuity of solution and
conservation of fluxes across a sliding interface, we employ mortar [27] as the communicator between two neighboring
subdomains.

Since the straight type has already been well studied, we therefore mainly focus on the circular one in this work. The
distribution of mortar elements along the circular sliding interface is sketched in Fig. 3(c). A mortar element is formed
between two successive points on the sliding interface. At every time instant, a mortar element is connected to a cell face
on its left and a cell face on its right (from a counterclockwise perspective). A cell face is connected to one or multiple
mortars on its one side. We call this information as the cell face and mortar connectivities. Note that these connectivities
are time-dependent, and need to be updated at every stage of a time marching scheme.

4.2. Two mortar types

Each sliding cell face is mapped to a unit straight line element (e.g., 0 ≤ ξ ≤ 1) when the underlying cell is mapped to a
unit square element in the computational space. Similarly, we also map each mortar element to a unit straight line element
6

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 3. Sliding mesh with (a) straight interface, (b) circular interface; (c) distribution of mortar elements (hatched lines) along a circular sliding interface.

Fig. 4. Mapping of a cell face and its mortars to unit line elements: left, physical space; middle, computational space; right, mortar space.

Fig. 5. Transfinite mapping of a physical element to a unit square element.

0 ≤ z ≤ 1 in the mortar space to facilitate the construction of, for example, solution and flux polynomials on the mortar.
This process has been illustrated in Fig. 4, where � denotes a cell face, and the ’s denote the associated mortar elements.

There are two ways to represent a mortar element (and the associated cell face): polynomial approximation (such as
iso-parametric mapping) and exact expression (transfinite mapping [46,47]). We define the resulting mortar elements as
polynomial mortar and transfinite mortar, respectively. For traditional straight interface (see Fig. 3(a)), these two representa-
tions are equivalent. Therefore, a linear (straight) polynomial mortar element is also the simplest transfinite mortar element.
However, for a curved mortar, such as the circular ones in Fig. 3(c), the geometric errors from a polynomial approximation
will always pose challenges on conservation, accuracy, etc. Transfinite mortar elements, which carry no geometric errors,
can completely avoid these issues.

Fig. 5 is a schematic of a physical element and the corresponding computational element. The transfinite mapping be-
tween these two elements can be expressed as

x(t, ξ,η) = (1 − η)x f1(t, ξ) + ξx f2(t, η) + ηx f3(t, ξ) + (1 − ξ)x f4(t, η)

− (1 − ξ)(1 − η)x1(t) − ξ(1 − η)x2(t) − ξηx3(t) − (1 − ξ)ηx4(t),
(38)

where the xi ’s denote coordinates of the corner nodes, the x f i ’s are expressions of the faces, and these terms are all time-
dependent for moving grids. If all the faces are represented by one-dimensional iso-parametric mappings of the same order,
then the transfinite mapping is equivalent to the iso-parametric mapping in (16). If a face has an exact expression, then
that face is represented exactly by the transfinite mapping.
7

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
In our case, assume face f1 is a circular arc (e.g., corresponds to the sliding cell face � in Fig. 4), then it can be
analytically expressed as

x�(t, ξ) =
[

x�(t, ξ)

y�(t, ξ)

]
=
[

R · cos
[
(1 − ξ)θ�

1 (t) + ξθ�
2 (t)

]+ xc(t)
R · sin

[
(1 − ξ)θ�

1 (t) + ξθ�
2 (t)

]+ yc(t)

]
, (39)

where R and (xc, yc) are the radius and the center coordinates of the arc; θ�
1 and θ�

2 are the angles that correspond to the
starting point (i.e., x1) and the ending point (i.e., x2), respectively, of the face. Similarly, a circular mortar element k has
the following exact expression,

xk (t, z) =
[

xk (t, z)
yk (t, z)

]
=
[

R · cos
[
(1 − z)θk

1 (t) + zθk
2 (t)

]+ xc(t)

R · sin
[
(1 − z)θk

1 (t) + zθk
2 (t)

]+ yc(t)

]
, (40)

where θk
1 and θk

2 are the starting and the ending angles of the mortar.
The analytical expressions in (39) and (40) are actually equivalent to the following linear mappings of the angles,

θ� = (1 − ξ)θ�
1 (t) + ξθ�

2 (t), (41)

θk = (1 − z)θk
1 (t) + zθk

2 (t), (42)

where θ� is the angle of a physical point (on �) that is mapped to a point ξ in the computational space, and θk is
the angle of a physical point (on k) that is mapped to a point z in the mortar space. Referring to the physical space in
Fig. 4 and considering the fact that θ� = θk represents the same physical point, the following relation thus holds exactly
between the computational space and the mortar space,

ξ = ok + sk · z, (43)

where sk and ok are the scaling and the offset of the mortar k with respect to the cell face �. More specifically,

sk = θ
k
2 − θ

k
1

θ�
2 − θ�

1

= �θk

�θ�
= R · �θk

R · �θ�
= Lk

L�
, (44)

ok = �θ1 + �θ2 + · · · + �θk−1

�θ�
=
∑k−1

α=1
sα, (45)

where Lk and L� are the physical lengths of the mortar and the face, respectively. Note that the scaling and offset are
both time-dependent, and are updated when the mortar connectivities are updated. We call the relations in (43)-(45) as
the offset and scaling relations, or OS relations for short. For a straight mortar, the OS relations hold exactly, no matter
the mortar is represented by a polynomial mortar or transfinite mortar. However, for a curved mortar (more specifically,
a circular mortar in this work), the OS relations only hold exactly when the mortar is represented by a transfinite mortar,
whereas a polynomial mortar always carries truncation errors.

Two comparison examples of the iso-parametric mapping and the transfinite mapping on elements with a circular edge
are included in Appendix A.

4.3. Projection procedures

Communications on a sliding interface include: projection of local discontinuous values from cell faces to mortars, com-
putation of common values on mortars, and projection of common values back to cell faces. These procedures are discussed
in details in what follows. To facilitate the discussion, we adopt the following notations: Q denotes a component of Q;
Q i denotes the discrete value of Q at the i-th FP; Q denotes the vector (Q 1, Q 2, · · · , Q N). This same rule also applies to
fluxes.

4.3.1. Project local values to mortars
Take solution as an example. Each solution component on a cell face is represented by the following one-dimensional

polynomial

Q �(ξ) =
N∑

i=1

Q �
i hi(ξ). (46)

If we define the same set of FPs in the mortar space, then the solution polynomial on a mortar can be constructed in the
same way. For example, on the left side of k , the solution polynomial is
8

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 6. Projection from cell faces to the two sides of a mortar.

Q k,L(z) =
N∑

i=1

Q k,L
i hi(z), (47)

where Q k,L
i is a solution component at the i-th FP on the left side of k . As illustrated in Fig. 6, to get the solutions on

the left side of k , we require

1∫
0

(
Q k,L(z) − Q �(ξ)

)
h j(z) dz = 0, ∀ j = 1,2, ..., N. (48)

Substituting (46) and (47) into the above equation and considering the OS relations, we will get the following equation
system

M Q k,L = S�→k Q �, (49)

where the elements of the coefficient matrices are

Mij =
1∫

0

hi(z)h j(z) dz, i, j = 1,2, ..., N, (50)

S�→k
i j =

1∫
0

hi(ok + skz)h j(z) dz, i, j = 1,2, ..., N. (51)

Solutions of (49), when written in matrix form, are

Q k,L = P�→k Q � = M−1S�→k Q �, (52)

where P�→k is the projection matrix from � to k . This process is repeated for all the solution components.
In the same way, we can get solutions on the right side of a mortar. Note that the integrals in (50) and (51) can be

evaluated exactly and efficiently using quadratures, e.g., the Clenshaw-Curtis quadratures. The Legendre points being the
SPs/FPs in this work makes the hi ’s orthogonal, and in turn makes the M matrix diagonal and trivial to invert. The inversion
actually needs to be done only once during initialization because the M matrix is time-independent.

4.3.2. Compute common values on mortars
The common solution Q k and the inviscid normal flux F k

inv on a mortar are computed in the same way as on a cell
interface, i.e.,

Q k = 1

2
(Q k,L + Q k,R), (53)

F k
inv = 1

2

[
(

↔
F k,L

inv + ↔
F k,R

inv) · n − λ(Q k,R − Q k,L)
]− (vg · n) Q k , (54)

where the variables, without further explanation, have similar meanings to those in (22) and (23).

4.3.3. Project common values back to cell faces
Fig. 7 illustrates the process of projecting common values from m mortars back to a cell face �. Taking flux as an

example, we can either directly project back the physical flux (method 1) or convert it to computational flux to project back
(method 2). The details are described in what follows.

Method 1:
9

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 7. Project common values from mortars back to cell faces.

The inviscid normal fluxes on a cell face and a mortar are represented by the following polynomials,

F �
inv(ξ) =

N∑
i=1

F �
inv,ihi(ξ), F k

inv(z) =
N∑

i=1

F k
inv,ihi(z). (55)

To get the F �
inv,i ’s, we require

m∑
k=1

ok+sk∫
ok

(
F �

inv(ξ) − F k
inv(z)

)
h j(ξ) dξ = 0, ∀ j = 1,2, ..., N, (56)

which gives

MF �
inv =

m∑
k=1

skSk→� F k
inv, (57)

where M is identical to that in (49), and Sk→� is simply the transpose of the S�→k matrix from (49). Solutions of (57)
are

F �
inv =

m∑
k=1

Pk→� F k
inv =

m∑
k=1

skM−1Sk→� F k
inv, (58)

where Pk→� is the projection matrix from k to �. The above physical flux on a cell face is then converted to a compu-
tational one to compute residuals. The conversion follows (26), and here the normal is

N = (y�
ξ ,−x�

ξ) = L�(cos θ�, sin θ�). (59)

The final computational flux on the cell face is

F̃ �
inv = ‖N‖F �

inv = L� F �
inv. (60)

Method 2:

Alternatively, we can convert the physical flux in (54) to computational, and then do the back projection. For a mortar,
there are two types of normals depending on which space, i.e., the mortar space or the computational space, is taken as the
reference space. For the mortar space, the normal is

N̆ = (yk
z ,−xk

z) = Lk (cos θk , sin θk). (61)

For the computational space, the normal is

Ñ = (yk
ξ ,−xk

ξ) = (yk
z zξ ,−xk

z zξ) = 1

sk
(yk

z ,−xk
z) = 1

sk
N̆. (62)

The corresponding fluxes in these two spaces are

F̆ k
inv = ‖N̆‖F k

inv = Lk F k
inv, (63)

F̃ k
inv = ‖Ñ‖F k

inv = 1

sk
F̆ k

inv. (64)

The computational inviscid fluxes on a cell face and a mortar are represented by the following polynomials,
10

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
F̃ �
inv(ξ) =

N∑
i=1

F̃ �
inv,ihi(ξ), F̃ k

inv(z) =
N∑

i=1

F̃ k
inv,ihi(z). (65)

To get the F̃ �
inv,i ’s, we require

m∑
k=1

ok+sk∫
ok

(
F̃ �

inv(ξ) − F̃ k
inv(z)

)
h j(ξ) dξ = 0, ∀ j = 1,2, ..., N, (66)

which leads to

M F̃ �
inv =

m∑
k=1

skSk→� F̃ k
inv =

m∑
k=1

Sk→� F̆ k
inv, (67)

where M and Sk→� are identical to those in (57). The solutions of the above system are

F̃ �
inv =

m∑
k=1

Pk→� F̆ k
inv =

m∑
k=1

M−1Sk→� F̆ k
inv, (68)

and note the difference between the Pk→� matrix in the above equation and that in Eq. (58).
These two methods are in fact equivalent as one may expect. To show this, simply divide both sides of (68) by L� , and

consider (44), (60), and (63), and we will get exactly the same result as (58). Also note the singularity in (64) when the
scaling (size) of a mortar becomes zero. This singularity is eliminated in (67) where the scaling is multiplied back. Equation
(64) is for derivation purpose only, and is not actually evaluated in the computation, therefore the singularity is naturally
avoided.

4.3.4. Treatment of viscous fluxes
For viscous flow, we first project the common solution (53) back to cell faces in the same way as (58). The updated

solutions on a cell face are then involved in the computation of solution gradients. After that, we could either project local
gradients (method 1) or local viscous fluxes (method 2) to mortars to compute common viscous fluxes which are then
projected back. The steps are described below.

Method 1:

The local gradients on cell faces are projected to mortars following (52). The common gradients and common physical
viscous fluxes on a mortar are then computed following (28) and (27), respectively. The normal viscous flux is calculated as

F̆ k
vis = ↔

F k
vis · N̆, (69)

where
↔
F k

vis = (F k
vis, G

k
vis) with the two components representing the physical common viscous fluxes. This normal viscous

flux is finally projected back to cell faces following (68).

Method 2:

Local viscous flux, denoted by F̃ �
vis, is projected to mortars in the same way as (48). The resulting normal viscous flux

on the left side of a mortar is

F̆ k,L
vis = P�→k F̃ �

vis = skM−1S�→k F̃ �
vis. (70)

Note the difference on the P�→k ’s in the above equation and that in (52). The viscous flux on the right side of a mortar is
obtained in the same way. The common normal viscous flux is then calculated as

F̆ k
vis = 1

2
(F̆ k,L

vis + F̆ k,R
vis), (71)

which is projected back to cell faces following (68) to replace the original normal viscous flux.
We have compared method 1 and method 2 in a series of tests (not reported here), and do not notice any obvious

difference on the results. However, method 2 is slightly faster than method 1, because it requires fewer projections and
calculations.

The above projection procedures are conservative and retain flow characteristics (i.e., satisfy outflow condition) for linear
and circular transfinite mortar elements. The proofs are given in Appendices B and C.

4.4. On the implementation

A flow chart of the implementation procedures is shown in Fig. 8. Some of the steps are explained with more details in
what follows.
11

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 8. Flow chart of the implementation procedures.

4.4.1. Read meshes
Mesh for each subdomain is generated independently and stored in a separate file. When subdomain meshes are read in,

they are assembled into a “single” mesh by adding offsets to the numbering of cells and vertices. For example, as shown in
Fig. 9, assume we have n subdomains with Ne

1, Ne
1, Ne

2, ..., Ne
n cell elements. In the assembled mesh, numbering for the cells

in subdomain 1 starts from 1, for subdomain 2 starts from Ne
1 + 1, for subdomain 3 starts from Ne

1 + Ne
2 + 1, and so on. The

same rule applies to vertices and boundary faces. In this way, cells and vertices are numbered uniquely and continuously.
The overall mesh behaves just like a single mesh, and sliding interfaces are like interior boundaries.

4.4.2. Reorder sliding cell faces
All sliding cell faces are stored consecutively in an array. This means that cell faces from the left side of the first sliding

interface are stored first, followed by those from the right side of the first sliding interface, and then those from the left
side of the second sliding interface, and so on. Cell faces from each side are reordered into counterclockwise order, which
makes connectivity updating more efficient. The algorithm for the reordering is quite simple: any cell face can be assigned
12

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 9. Schematic of n subdomains with (n − 1) sliding interfaces (inner subdomains have been scaled).

as the first cell face, and then the next cell face is the one whose starting vertex is the ending vortex of the current cell
face, repeat until finished.

4.4.3. Correct sliding interface
Mesh generators may introduce geometric errors. When it comes to sliding mesh, the problem is usually that, the vertices

on a circular sliding interface do not represent the same sliding radius. This geometric error may potentially contaminate
a simulation. Here is an easy fix that can be performed during preprocessing: pick up a vertex and take the corresponding
sliding radius as a reference radius, and then use this reference radius and the original angle of each vertex to update the
coordinates of that vertex. In this way, all the vertices on a circular sliding interface represent the same sliding radius.

4.4.4. Update connectivities
For simplicity, we only consider the case with one sliding interface, such as that shown in Fig. 3(c). Once the mesh is

given, the total number of mortar elements is also given, which is equal to the total number of cell faces on the two sides
of a sliding interface. This information allows us to pre-allocate the necessary memories. We then take the starting vertex
of the first cell face as the starting vertex of the first mortar, and this connectivity will not change with time. After that,
we “walk” along the sliding interface counterclockwise, and the next vertex (no matter which side it is from) becomes the
ending vertex of the first mortar and the starting vertex of the second mortar at the same time. We repeat this process
until all mortars are identified. This overall process can be applied to arbitrary number of sliding interfaces. More detailed
steps can be found in our previous work [33].

4.4.5. Compute fluxes
The flow chart in Fig. 8 only shows the steps related to sliding. These steps must be injected into the main solver at

the right locations. For example, the “compute inviscid flux” part is called after interior and cell interface inviscid flux
computations are done. The back projection of common solution takes place after all inviscid flux computations are finished
and before viscous flux computations start. The projections of viscous flux are carried out after all interior and cell interface
viscous flux computations are done.

4.5. Extension to 3D

The above procedures can be readily extended to three-dimensional. We take a simplified mesh (with a cutout to expose
the sliding interface) for a rotating square cylinder as shown in Fig. 10(a) to explain how it works. For simplicity, we
require the two subdomain meshes to match in the spanwise (i.e., axial) direction. In practice this requirement can be easily
lifted. The resulting sliding interface is cylindrical. We take out a cell face and its mortars (assume two here) as sketched
in Fig. 10(b) to demonstrate the process. Transfinite mapping is first applied to map these physical elements to standard
elements. The resulting mortar space (ξ ′, η′) and the computational space (ξ, η) are related as

ξ = o + sξ ′, η = η′, (72)

where 0 ≤ ξ, η, ξ ′, η′ ≤ 1, and o and s are the offset and scaling of a mortar. Assume the variable of interest is φ, then on a
face and the left side of a mortar, we have

φ�(ξ,η) =
N∑ N∑

φ�
i j hi(ξ)h j(η), (73)
j=1 i=1

13

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 10. Schematics of: (a) a 3D sliding mesh (with a cutout), (b) mapping of cell face and mortars.

φ,L(ξ ′, η′) =
N∑

j=1

N∑
i=1

φ
,L
i j hi(ξ

′)h j(η
′). (74)

To project φ from a cell face to the left side of a mortar, i.e., to obtain the unknown
(
φ

,L
i j

)
’s, we require

1∫
0

1∫
0

(φ,L(ξ ′, η′) − φ�(ξ,η))hα(ξ ′)hβ(η′)dξ ′dη′ = 0, ∀α,β = 1,2, ..., N. (75)

Substituting (72) into the above equation, it is provable that the projection reduces to the following one-dimensional one,

1∫
0

(φ,L(ξ ′, X j) − φ�(ξ, X j))hα(ξ ′)dξ ′ = 0, ∀α = 1,2, ..., N, (76)

where X j is the coordinate of the j-th SP. The above projection is basically identical to (48). We just need to repeat this
process for every j in order to obtain all the unknowns. The procedures for calculating the common values and projection
them back are also identical to those discussed in Sec. 4.3.

5. Examples

In this section, we apply the sliding mesh method to several flow problems. We first test it on an inviscid flow and a
viscous flow to verify the spatial and temporal accuracies. We then study the conservation and the free-stream-preservation
properties of the method. Following that, we perform a comparison study between the present method and a rigid-rotation
method on flow over a rotating square cylinder. Finally, we apply the method to simulate flow over multiple rotating square
cylinders in both 2D and 3D to further demonstrate its capability.

For all the test cases wherever applicable, we employ the following L2 norm to measure the errors,

L2 error =
√∑NDOF

i=1 (φi − φexact
i)2

NDOF
, (77)

where φ represents the variable of interest, φi and φexact
i are the numerical and the exact solutions at the i-th degree of

freedom (DOF), NDOF = Nelem · N2 is the total number of DOFs, Nelem is the total number of mesh elements, N = P +1 is the
scheme order (also the number of SPs in each direction of an element), and P is the polynomial degree. Unless otherwise
noted, transfinite mortars are used by default.

5.1. Spatial accuracy

5.1.1. Euler vortex flow
This is an inviscid flow test. In this flow, an isentropic vortex is superimposed to and convected by a uniform flow. The

flow field in an infinite domain at a time instant t can be analytically expressed as

u = U∞
{

cos θ − ε yr

r
exp

(
1 − x2

r − y2
r

2

)}
, (78)
c 2rc

14

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 11. Mesh for Euler vortex flow simulation.

Fig. 12. Density contours of Euler vortex flow at t = 2 (dashed lines represent sliding interface).

v = U∞
{

sin θ + εxr

rc
exp

(
1 − x2

r − y2
r

2r2
c

)}
, (79)

ρ = ρ∞
{

1 − (γ − 1)(εM∞)2

2
exp

(
1 − x2

r − y2
r

r2
c

)} 1
γ −1

, (80)

p = p∞
{

1 − (γ − 1)(εM∞)2

2
exp

(
1 − x2

r − y2
r

r2
c

)} γ
γ −1

, (81)

where U∞ , ρ∞ , p∞ , M∞ are the speed, density, pressure and Mach number of the uniform flow; θ denotes the mean flow
direction; ε and rc are the strength and size of the vortex; (xr, yr) = (x − x0 − ūt, y − y0 − v̄t) are the relative coordinates;
(x0, y0) represent the initial position of the vortex; (ū, ̄v) = (U∞ cos θ, U∞ sin θ) are the velocity components of the mean
flow.

For this test, we have chosen the following parameters: U∞ = 1, ρ∞ = 1, M∞ = 0.3, θ = arctan(1/2), ε = 1, and rc = 1.
The overall computational domain has a size of 0 ≤ x, y ≤ 10, and the vortex is initially placed at (x0, y0) = (5, 5). Time-
dependent analytical solutions are weakly prescribed along the boundaries to provide Dirichlet boundary conditions. The
mesh used for this simulation is shown in Fig. 11, where there are 72 mesh elements in total, with 20 of them in the inner
rotating subdomain whose radius is 2. Six rotational/sliding speeds: ω = 0, 1, 5, 10, 15 and 20, are tested to study their
effects on the solution. For all the cases, a five-stage fourth-order SSP Runge-Kutta scheme [41,42] with a time step size of
�t = 1.0 × 10−4 is used for the time marching.

In Fig. 12, we compare the density contours at t = 2 from the ω = 20 case using different schemes. At this time instant,
the vortex center travels right onto the sliding interface. It is obvious that P = 2 does not provide enough resolution as the
vortex is poorly resolved. But as the polynomial degree increases, the solution quality becomes much improved. Even at a
small polynomial degree of P = 4 and on such a coarse mesh, the details of the vortex are very well captured.

The L2 errors of density are plotted in Fig. 13 against polynomial degrees. It is seen that the errors from different cases
are comparable when P ≤ 13, and start differing when P > 13. The reason for this is that spatial errors dominate in the first
regime, and they keep decreasing to such a small level that temporal errors start to dominate in the second regime. And
larger rotational speed induces larger temporal errors as is indicated by the second regime of Fig. 13. Similar observation on
the rotational-speed effects was reported in [25]. In that work, the effects start showing up at a very early stage of P = 4,
15

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 13. L2 error of density against polynomial degree for Euler-vortex flow simulations using transfinite mortars.

Table 1
Comparison of the L2 errors of density for Euler vortex flow simulations using polynomial and transfinite mortars.

ω mortar P = 1 2 3 4 5 6 7 8

0 poly. 2.3285E-2 2.9779E-3 2.8862E-4 3.3855E-5 8.5224E-6 1.5871E-6 2.7668E-7 6.2455E-8
trans. 5.3911E-3 7.5032E-4 2.3443E-4 3.4261E-5 8.4903E-6 1.5878E-6 2.7667E-7 6.2454E-8

1 poly. 1.8387E-2 2.5269E-3 2.3167E-4 2.2928E-5 5.8466E-6 1.0217E-6 1.7674E-7 4.0591E-8
trans. 5.3807E-3 7.7627E-4 1.9015E-4 2.2283E-5 5.8395E-6 1.0218E-6 1.7674E-7 4.0591E-8

5 poly. 3.7218E-2 2.1340E-3 3.3263E-4 3.9312E-5 7.8944E-6 1.4231E-6 2.8225E-7 5.5027E-8
trans. 7.2559E-3 1.1192E-3 2.6537E-4 3.9083E-5 7.8713E-6 1.4233E-6 2.8224E-7 5.5028E-8

10 poly. 5.2106E-2 1.8785E-3 3.3372E-4 4.5660E-5 7.4160E-6 1.1199E-6 2.1073E-7 4.1293E-8
trans. 9.0595E-3 1.2478E-3 2.7582E-4 4.5573E-5 7.3942E-6 1.1201E-6 2.1072E-7 4.1293E-8

15 poly. 6.6791E-2 1.7160E-3 2.9753E-4 3.9792E-5 6.9517E-6 1.0915E-6 2.0459E-7 3.9185E-8
trans. 9.6755E-3 1.1657E-3 2.5797E-4 3.9764E-5 6.9349E-6 1.0917E-6 2.0459E-7 3.9185E-8

20 poly. 8.3303E-2 1.6067E-3 2.9449E-4 3.8528E-5 6.6154E-6 1.0620E-6 2.0005E-7 3.9062E-8
trans. 9.3835E-3 1.1098E-3 2.4931E-4 3.8419E-5 6.5872E-6 1.0620E-6 2.0006E-7 3.9062E-8

which is mainly due to the low-order (2nd order) temporal scheme used in that work. The present results suggest that the
rotational/sliding speed effects can be dramatically reduced by using a high-order temporal scheme.

A closer look at the curves in Fig. 13 reveals “inconsistencies” on the results. For example, the ω = 20 case generally
gives smaller errors than the ω = 5 case does in the first regime, and the errors are sometimes even smaller than those of
the ω = 0 case. These inconsistencies originate from the nonuniformity of the mesh in the rotating subdomain. When the
vortex travels to the same location, it is actually captured by different grid resolutions when the rotational speed differs.
Nevertheless, for all the cases, the errors inevitably decrease exponentially, which confirms the high-order accuracy of the
sliding-mesh method.

As a comparison, we also perform this same test using polynomial mortars. Table 1 shows the results, where “poly.”
and “trans.” stand for polynomial and transfinite mortar, respectively. For each case, the polynomial mortars are represented
by polynomials of the same degree as that of the scheme. It is seen that the errors from the polynomial mortars overall
approach those from the transfinite mortars as P increases. More specifically, when P ≤ 5 (which is the most practical
region for real applications), the polynomial mortars generate larger errors; when P ≥ 6, the errors from the two mortar
types become indistinguishable. One way to reduce the errors from polynomial mortars is to use higher-degree polynomials
for the mortars (similar to what we did in our previous work [30]). For example, use P +1 or even higher degree polynomial
mortars for a degree P scheme. In spite of that, transfinite mortar is still the better choice because it always guarantees the
minimum errors.

5.1.2. Taylor-Couette flow
Taylor-Couette flow is formed between two concentric rotating circular cylinders. Due to viscous effects, this flow will

reach a steady state if the Reynolds number is small. The steady-state azimuthal flow speed has the following expression,

vθ = vθi

ro/r − r/ro + vθo

r/ri − ri/r
, (82)
ro/ri − ri/ro ro/ri − ri/ro

16

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 14. Mesh for Taylor-Couette flow simulation.

Fig. 15. Steady state density contours of Taylor-Couette flow (dashed lines in the middle represent sliding interface).

where ri and ro are the radii of the inner and the outer boundaries, respectively; vθi and vθo are the azimuthal flow speeds
at these two boundaries.

The mesh for this simulation is shown in Fig. 14. The overall domain is bounded by ri = 1 and ro = 2, and is split
into a rotating inner subdomain and a fixed outer subdomain by a sliding interface at rs = 1.5. These two subdomains are
meshed into 24 and 32 elements, with uniform grid distribution in azimuthal and radial directions. The outer boundary
is treated as a no-slip isothermal wall with vθo = 0. The inner boundary is set as a Dirichlet boundary with ρi = 1, Mach
number Ma = 0.1, and vθi = 1. The Reynolds number based on flow properties at the inner boundary is Re = 10. Again,
six rotational speeds: ω = 0, 1, 5, 10, 15 and 20, are tested. The same time marching scheme as that for the previous test
with a time step size of �t = 5.0 × 10−5 is used for all the cases. Exact transfinite mapping is employed on all circular
boundaries, and all interior cell faces are represented linearly.

Fig. 15 shows the steady state density contours from different schemes. The contours are expected to be a series of
concentric circles, and we see improved results as the polynomial degree increases. Note that since the boundary conditions
are weakly imposed, the computed values on the inner boundary are therefore not necessarily identical to the prescribed
values. And this is the reason for the dashed lines at the inner boundaries. Nevertheless, the boundary conditions become
stricter as the polynomial degree increases, which is why the dashed lines have disappeared at P = 4.

The L2 errors of the u velocity (i.e., the x-component of vθ) are shown in Fig. 16. Overall, the errors decrease expo-
nentially with polynomial degree before temporal errors become dominant, which confirms the high-order accuracy of the
present method on viscous flow. Meanwhile, the results from different rotational speeds are more consistent than those in
the previous test. This is because of the uniformity of the current mesh in the azimuthal direction, which gives identical
mesh resolution even when the rotational speed differs. As expected, the rotational speed effects again show up at large P
when spatial errors are small enough. We also performed this test using polynomial mortars, and the differences against
transfinite mortars are similar to those in the previous test. For this reason, the data is not reported here.

5.2. Temporal accuracy

In this section, we test the temporal accuracy and verify that the transfinite-mortar based sliding-mesh method does
not affect the order of accuracy of a time marching scheme. We employ several strong-stability-preserving Runge-Kutta
(SSPRK) schemes for the temporal discretization. Following the rules in [48], we denote an s-stage p-th order SSPRK scheme
as SSP(s, p). The CFL condition requires small enough time step size to stabilize a scheme, which makes it difficult for
17

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 16. L2 errors of u velocity against polynomial degree for Taylor-Couette flow simulation.

Fig. 17. L2 errors of ρ against time step size for the Euler vortex flow simulation.

temporal error to dominate. To alleviate this issue, we employ the following SSPRK schemes that allow larger CFL numbers
(and thus larger time step sizes): the SSP(4,2) scheme from [48], the SSP(8,3) scheme from [42], and the SSP(10,4) scheme
from [49].

The tests are performed on the previous Euler vortex flow. Whenever it permits, we have varied the polynomial degree
for each case to ensure that the spatial errors are negligibly small compared with the temporal errors. The results are
reported in Fig. 17 for different rotational speeds. For almost all the cases, the temporal errors decrease at the correct
orders as the time step size decreases. For the ω = 0 case with SSP(10,4), the temporal errors become so small (in the
order of 10−14) that they can no longer be easily separated from the spatial errors at small time step sizes, which results
in the incorrect slope at small time step sizes. Nevertheless, at large time step sizes, the curve still shows the correct slope
for this case. We also have tested the temporal accuracy on the Taylor-Couette flow, and similar results were obtained (for
conciseness, the results are not included here).
18

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
5.3. Conservation

From the conservation proof in Appendix B, and assume a mesh has Nelem elements, Nboun1 boundary cell faces that are
mapped to the ξ direction, and Nboun2 boundary cell faces that are mapped to the η direction, then global conservation can
be expressed as

Nelem∑
e=1

1∫
0

1∫
0

∂Q̃e

∂t
dξdη +

Nboun1∑
b1=1

1∫
0

signb1 · F̂b1 dη +
Nboun2∑
b2=1

1∫
0

signb2 · Ĝb2 dξ = 0, (83)

where sign = 1 or −1, depending on which standard face the physical cell face is mapped to. Denoting the temporal
discretization by ̃∂/̃∂t, then the exact time derivative in (83) can be expressed as

∂Q̃e

∂t
= ∂̃Q̃e

∂̃t
+ ε(�t, ξ,η), (84)

where ε(�t, ξ, η) represents a small error that is a function of time-step size and space. Substitute the above relation into
(83),

Nelem∑
e=1

1∫
0

1∫
0

∂̃Q̃e

∂̃t
dξdη +

Nboun1∑
b1=1

1∫
0

signb1 · F̂b1 dη +
Nboun2∑
b2=1

1∫
0

signb2 · Ĝb2 dξ = E(�t), (85)

where

E(�t) = −
Nelem∑
e=1

1∫
0

1∫
0

εe(�t, ξ,η)dξdη. (86)

When �t → 0, or when it is a steady-state problem, we will have E(�t) → 0 if a numerical scheme is indeed conservative.
And the four components of E(�t) measure how well conservation is satisfied for mass, momentums and energy.

Based on the above analysis, we employ a flat-plate Couette flow to verify the conservation property of the present
method. This flow is formed between two infinite flat plates separated by a distance of H , with the upper plate moving at
a constant speed U and the lower plate fixed. The steady state solution is

u = U
y

H
, v = 0, p = constant, (87)

T = T0 + (
T1 − T0

) y

H
+ μU 2

2κ

(
y

H
− y2

H2

)
, (88)

where 0 ≤ y ≤ H is the vertical coordinate, T0 and T1 are temperatures on the lower and the upper plates.
The mesh used for this simulation is identical to that in Fig. 11, but is scaled by a factor of 1/10 in each direction

(i.e., with H = 1) to make the simulation setup easier. The upper plate speed is set to U = 1. The temperatures are set to
T0 = T1 = 1. All other parameters are chosen such that the flow has a Prandtl number Pr = 0.72 and Reynolds number
Re = 100, and the flow on the upper plate has a Mach number Ma = 0.8. The flow field is initialized using the exact
solution. The boundary conditions are weakly imposed using the exact solution. The SSP(2,2) temporal scheme with a time
step size of 5.0 × 10−6 is used for all the simulations. And all the simulations are performed using double precision float
numbers.

We have tested different rotational speeds and schemes, with E(�t) monitored until Ut/H = 10. It was observed that for
all the cases, E(�t) slightly oscillates around machine precision, but overall does not grow with time. In the calculations,
the numerical time derivative term in (85) is replaced by the residual according to (34), and the integrals are evaluated
using Gauss–Legendre quadrature. For conciseness, we only report the time-averaged values of |E(�t)| for some of the cases
in Table 2. Obviously, the method based on transfinite mortar has excellent conservation properties even under dramatically
different rotational speeds and schemes. This same test was repeated using polynomial mortars, and the results were found
to be one to two magnitudes worse when P ≤ 5, but of similar quality when P ≥ 6. For conciseness, those results are not
included here.

5.4. Free-stream preservation

In this test, the free stream flow is chosen such that it has a Mach number Ma = 0.3. The same mesh as that for
the conservation test are used for this test. Dirichlet boundary conditions derived from the constant flow are applied at
all the outer boundaries. Different polynomials and rotational speeds are tested to investigate their effects on free-stream
preservation. For all the cases, we employ SSP(10,4) with a time-step size of 1.0 × 10−3 as the time marching scheme. We
19

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Table 2
Conservation of mass, momentum and energy on a flat-plate Couette flow using
transfinite mortars.

ω P Mass Momentum 1 Momentum 2 Energy

0 2 3.457E-16 2.016E-16 3.865E-16 4.284E-16
4 5.489E-16 3.053E-16 5.120E-16 1.715E-16
8 5.976E-17 3.939E-16 7.077E-16 7.978E-16

5 2 2.180E-15 9.532E-15 1.532E-15 7.061E-15
4 7.535E-16 2.850E-16 3.237E-16 5.843E-16
8 4.442E-16 1.544E-16 3.045E-17 4.136E-16

10 2 6.762E-15 9.032E-15 1.134E-15 1.083E-15
4 7.486E-16 7.410E-16 5.596E-16 5.025E-16
8 1.460E-16 1.093E-16 4.794E-16 3.744E-16

20 2 8.135E-15 6.418E-15 3.526E-16 1.253E-15
4 3.945E-16 3.938E-16 4.947E-16 6.789E-16
8 8.707E-16 9.576E-16 1.096E-16 4.623E-15

Table 3
Free stream preservation on a conforming dynamic mesh (‘∗’) and a sliding mesh (the rest, using transfinite mortars).

ω
P

1 2 3 4 5 6 7 8

∗ 7.760E-16 6.213E-16 1.983E-15 3.869E-15 4.009E-15 3.566E-15 2.991E-15 2.955E-15
0 1.071E-04 7.844E-06 2.585E-07 8.252E-09 2.173E-10 4.676E-12 1.049E-13 3.332E-15
1 1.023E-04 7.609E-06 2.006E-07 7.495E-09 1.625E-10 3.985E-12 7.057E-14 3.213E-15
5 8.846E-05 7.642E-06 2.075E-07 7.393E-09 1.614E-10 4.006E-12 7.465E-14 3.518E-15
10 8.556E-05 7.559E-06 2.204E-07 7.283E-09 1.691E-10 4.036E-12 7.857E-14 3.364E-15
15 9.179E-05 7.524E-06 2.491E-07 7.806E-09 2.068E-10 4.455E-12 9.981E-14 3.658E-15
20 9.482E-05 7.817E-06 3.456E-07 8.873E-09 2.612E-10 5.123E-12 1.149E-13 3.880E-15

Table 4
Free stream preservation on a sliding mesh using polynomial mortars.

ω
P

1 2 3 4 5 6 7 8

0 2.660E-02 2.745E-03 1.432E-04 5.970E-06 2.786E-07 8.370E-09 3.410E-10 8.074E-12
1 1.773E-02 1.846E-03 8.810E-05 5.914E-06 1.956E-07 6.686E-09 2.273E-10 6.164E-12
5 1.494E-02 2.398E-03 1.087E-04 5.830E-06 1.764E-07 6.651E-09 1.891E-10 5.842E-12
10 1.752E-02 2.923E-03 1.149E-04 4.889E-06 1.557E-07 7.022E-09 1.710E-10 5.647E-12
15 1.955E-02 3.007E-03 1.112E-04 7.051E-06 2.139E-07 1.007E-08 2.215E-10 8.484E-12
20 2.278E-02 2.954E-03 1.383E-04 8.087E-06 2.507E-07 1.263E-08 2.947E-10 8.571E-12

measure the free-stream preservation by the normalized L2 error of pressure (represents the average strength of numerically
generated disturbances). As a comparison, we also test free-stream preservation on a conforming dynamic mesh that has
almost exactly the same resolution as the nonconforming sliding mesh. The center of conforming mesh has a displacement
of �y(t) = 0.1 sin t with respect to its initial position, with the mesh in the rest of the domain deforming using an algebraic
function [31]. For all the cases, we monitored the L2 errors until the nondimensional time reaches U∞t/H = 20. The results
at the end of the simulations are summarized in Tables 3 and 4.

For perfect free-stream preservation, the error should stay at the level of machine precision, and its magnitude should
not change dramatically with polynomial degree. The row marked by “∗” in Table 3 demonstrates that the FR method
together with the GCL equations ensure very good free-stream preservation on the conforming dynamic mesh. From the
remaining data in both tables, we see that the sliding mesh methods based on both mortar types, however, do not perfectly
satisfy free-stream preservation. Instead, they approach free-stream preserving in an exponential manner as the polynomial
degree increases. Furthermore, the numerical disturbances introduced by polynomial mortars are consistently about three
magnitudes larger than those introduced by transfinite mortars.

The reason for the present method not strictly satisfying free-stream preservation is not hard to be identified. For a
constant free stream flow, we are basically projecting the metric terms between cell faces and mortars. When a circular cell
face is represented exactly, its metric terms are in the space of P∞ , but the output of a projection is in the space of PN−1.
This means that there is always a truncation error of O(ξ N) during the projection of the metric terms, which therefore
results in an exponential approximation of free-stream preservation.

The issue of using exact geometric expression for calculating metric terms has been discussed in [12,50], and the sug-
gestion is to use polynomial approximation to satisfy free-stream preservation. This suggestion has been proven to work
perfectly on curved conforming meshes. A recent work [51] on curved nonconforming meshes in the special scenario of
subdivision of parent element reveals that a necessary condition for free-stream preservation is that the metrics of a child
20

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 18. Meshes for a rotating square cylinder: left, sliding mesh; right, rigid-rotating mesh.

face being computed from its parent face. But for general curved nonconforming meshes, such as the sliding meshes in
this work, a child face (e.g., a mortar) does not have a unique parent (more specifically, a child face has two parent faces
that are different polynomials), and thus the aforementioned necessary condition generally can not be satisfied. To the au-
thors’ knowledge, free-stream preservation on general curved nonconforming meshes still remains an open problem for all
polynomial-based high-order methods. Note that for linear nonconforming meshes, such as that in [34], free-stream preser-
vation can always be easily satisfied. However, linear mesh obviously introduces too large geometric errors for the curved
sliding interfaces here (see Appendix A).

Nevertheless, Table 3 shows that, using transfinite mortars, the free-stream-preservation errors from the sliding mesh
quickly decrease to machine precision even at moderate polynomial degrees. Since this test is performed on a very coarse
grid, we thus expect very minor free-stream preservation effects in real applications where the meshes are usually much
finer.

5.5. Flow over a rotating square cylinder

As shown in Fig. 18, we employ two types of meshes for this simulation: a sliding mesh (on the left) and a rigid-rotating
mesh (on the right). The square cylinder has a diameter (i.e., diagonal length) of D = 1. The sliding mesh consists of 6,797
quadrilateral elements in an overall 100D × 100D domain, with 95 of the elements inside a small rotating subdomain
whose diameter is 1.2D . The rigid-rotating mesh consists of 6,841 elements in a whole-piece rotating circular domain
whose diameter is 100D . Both meshes are refined in the vicinity of the cylinder to better resolve flow structures. With
similar amounts of mesh elements, the sliding mesh obviously provides good resolution in a wider range of the wake
region. The rigid-rotating mesh, on the other hand, always wastes a large amount of elements in unimportant regions,
which is unavoidable. Close views of the meshes are shown on the top right of each figure.

The freestream flow is chosen such that it has a Mach number Ma = 0.1. The Reynolds number based on free-stream flow
properties and the cylinder diameter is ReD = 100. For the sliding mesh, the inner subdomain rotates counterclockwise at a
non-dimensional rotational speed ωD/U∞ = π/2 (which corresponds to a nondimensional period T ∗ = 4); and for the rigid-
rotating mesh, the whole domain rotates at this speed. No-slip adiabatic wall boundary condition is applied on the cylinder
surface. Characteristic far-field boundary conditions are applied at all outer boundaries. The eighth-order (i.e., P = 7) spatial
scheme and the SSP(10,4) time marching scheme [49] with a nondimensional time-step size of �tU∞/D = 2.0 × 10−4 are
employed to run the simulations. Polynomial and mesh refinement studies have also been performed to have confirmed
that the present setup well resolves the flow.

The lift and drag coefficients of the cylinder are plotted in Fig. 19. The cylinder experiences a negative lift and positive
drag all the time. These curves overall do not have a periodic pattern that is directly related to the cylinder’s motion. But the
horizontal distance between two neighboring local peaks (or troughs) is approximately 1 (i.e., T ∗/4), which is the period at
which the cylinder disturbs the flow. Results from these two distinctly different approaches agree very well, which confirms
the correctness of the present method.

We also compare the flow fields from the same time instant in Fig. 20 using vorticity contours. Alternative positive and
negative vortices are observed in the wake region, and they are well captured even in the very far flow region. The two
approaches basically produce identical flow fields as the vortices have almost exactly the same positions and shapes. The far
wake region from the sliding mesh is slightly better resolved than that from the rigid-rotating mesh. This is consistent with
our previous observation that sliding mesh always provides better resolution than rigid-rotating mesh for a given number
of elements.
21

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 19. Lift and drag coefficients of a rotating square cylinder using a sliding mesh and a rigid-rotating mesh.

Fig. 20. Vorticity contours of flow over a rotating square cylinder at a time instant. (For interpretation of the colors in the figure(s), the reader is referred
to the web version of this article.)

5.6. Flow over multiple rotating square cylinders

In this test, we simulate the interactions of a uniform incoming flow and four rotating square cylinders to show the
capability of the method for handling multiple rotating objects. A schematic of the simulation setup is shown in Fig. 21. The
four cylinders are separated by a horizontal distance of 1.5D and a vertical distance of 2D , where D is the diameter of the
cylinder with the same definition as that in the previous test. Two cases are investigated, where the only difference is the
rotational direction of each cylinder as marked in the schematic. For simplicity, we denote the four cylinders as A1, A2, B1
and B2.

The overall mesh for this test has 7,409 elements, with its topology and distribution similar to those of the sliding
mesh in the previous test. Each inner subdomain mesh is exactly the same as that in the previous test. For conciseness,
views of the mesh are not repeated here. All other parameters for this test, such as the freestream Mach number, the
Reynolds number, the rotational speed, the boundary conditions, etc., are exactly the same as those for the previous test.
The simulations are performed using the eighth-order scheme with SSP(10,4) and a nondimensional time step size of 1.25 ×
22

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 21. Schematic of simulation setup for flow over multiple rotating square cylinders.

Fig. 22. Lift and drag coefficients for flow over multiple rotating square cylinders (Case 1).

10−4. Each simulation is continued for a nondimensional time of 500. In what follows, we briefly discuss the results for
each case.

5.6.1. Case 1
Fig. 22 shows the lift and drag coefficients from U∞t/D = 50 to 100. Due to the Magnus effects and the opposite

rotational directions, the cylinders in the same column experience lifts with the same magnitude but opposite signs. The
overall system thus does not experience any net lift force. On average, the upstream cylinders have much larger lifts but
much smaller lift oscillations than the downstream ones do. Similarly, the cylinders in the same column experience exactly
the same drags both in magnitudes and signs in this time frame. The drags on the upstream cylinders also have much larger
magnitude but much smaller oscillations than those of the downstream ones. In fact, the magnitudes of the forces on the
cylinders in the same column do not stay the same all the time, and they actually start differing after U∞t/D ≈ 130 (not
shown in the figure, will explain later).

A snapshot of the flow field visualized by vorticity contours at U∞t/D = 80.5 is shown in Fig. 23. Well organized
positive-negative vortex pairs are seen in the wake region and extend all the way to the very far flow field. This patten is
23

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 23. Vorticity contours of flow over multiple rotating square cylinders (Case 1).

Fig. 24. Lift and drag coefficients for flow over multiple rotating square cylinders (Case 2).

perfectly mirror-symmetric about the horizontal center line of the setup. In fact, this is a very unstable and unsustainable
system. Any tiny numerical disturbance could cause the flow to lose this symmetry. Using the present method, this sym-
metry is maintained for a surprisingly long time (U∞t/D ≈ 130) before breaking up. This evidently demonstrates that the
present method introduces very little numerical disturbance to a simulation. After the breakup of the symmetry, the flow
becomes less interesting, and therefore we only focus on the flow before that point for this case.

5.6.2. Case 2
The lift and drag coefficients for this case are plotted in Fig. 24. The previous conclusions from Case 1 still hold here.

Except that the current curves show a rather mono frequency that corresponds to a period of T ∗/4, where T ∗ = 4 is the
nondimensional rotational period of the cylinders. This mono frequency indicates fewer vortical structures (or noises) in
the flow field. Compared with Case 1, we also notice dramatic drag reduction on all the cylinders. On average, the system
has a drag reduction of about 50%, and the rear cylinders even do not experience much net drag at all. Meanwhile, lift
enhancement is observed on each individual cylinder, but the overall system still remains lift-free.

Fig. 25 shows the instantaneous flow field at U∞t/D = 250.5. Compared with Case 1, vortex shedding has been com-
pletely suppressed in this case, which is consistent with our observation from the force curves. This flow remains very stable
and is almost steady (except in the very vicinity of the cylinders) throughout the simulation (i.e., even at U∞t/D = 500).
The reason for this steadiness is obvious. The rotation motion of the cylinders in this case (as shown in Fig. 21(b)) decel-
erates the flow (also increases pressure) in the gap between the two rows. This reduction of momentum and increase of
pressure prevent vortex shedding from the cylinders and thus make the flow almost steady.
24

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 25. Vorticity contours of flow over multiple rotating square cylinders (Case 2).

Fig. 26. Isosurfaces of QD2/U 2∞ = 3 for flow over multiple 3D rotating square cylinders (Case 1).

Fig. 27. Isosurfaces of QD2/U 2∞ = 3 for flow over multiple 3D rotating square cylinders (Case 2).

5.7. Flow over 3D rotating square cylinders

The first aim of this test is to demonstrate the method’s capability for simulating 3D flows. Meanwhile, in the previous
test we have noticed that a shift on the rotational direction of the cylinders has dramatically changed the 2D laminar flow
fields. We are interested to see whether these changes persist in 3D at a much higher Reynolds number ReD = 5, 000,
which serves as the second aim of this test. The mesh for this test is generated by extruding the previous 2D mesh in the
spanwise (i.e., z) direction. The resulting domain has a size of π D in the spanwise direction, and is meshed into 32 intervals
in this direction. All other parameters are exactly the same as those in the previous test. The simulation results are briefly
summarized below.

We noticed suppression of vortex shedding and a much narrower wake in Case 2 of the previous test. This is somewhat
still true for the 3D flows as shown in Figs. 26 and 27, where the flow fields are visualized using isosurfaces of Q-criterion
[52] (denoted by Q). From Fig. 26, we see vortex shedding from both the top and bottom sides of each row, and the
interactions of these vortices lead to in a very wide and active wake. In contrast, in Fig. 27, shear layers are seen on the two
sides of each row and they do not break up until sufficiently far (≈ 6D) downstream of the cylinders, resulting in a much
narrower and quieter wake. The present method is able to capture a lot of small turbulence structures, which is evidently
benefited from the low dissipation nature of the method.

From the force coefficients in Figs. 28 and 29, it is seen that the magnitudes of the forces on the cylinders in the same
column are no longer exactly the same. Nevertheless, they are still very close. On average, the two systems are still roughly
25

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 28. Lift and drag coefficients for flow over multiple 3D rotating square cylinders (Case 1).

Fig. 29. Lift and drag coefficients for flow over multiple 3D rotating square cylinders (Case 2).

lift-free. The drag coefficients reveal that Case 2 again has a significant drag reduction of about 50%, which is comparable
to that in the 2D cases. To sum up, it is observed that no matter it is in 2D or 3D, by switching the signs of rotation from
Case 1 to Case 2, we see a much quieter flow field, and a dramatic drag reduction of the system.
26

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
6. Summary

The polynomial mortar and the transfinite mortar together provide a complete picture of the mortar method. These
two mortar concepts are equivalent on linear meshes, but differ on curved meshes. More specifically, on curved meshes,
the transfinite mortar introduces no geometric error, exactly satisfies the OS relations, has consistent spatial and temporal
accuracies, is conservative, and guarantees outflow condition; the polynomial mortar, however, is shown to be less accurate
and less conservative. On general nonuniform nonconforming curved meshes, both mortar types cannot directly satisfy
free-stream preservation, which results in unavoidable numerical disturbances. We point out that this remains as an open
problem for all polynomial-based high-order methods. Nevertheless, transfinite mortar is shown to generate much smaller
numerical disturbances than polynomial mortar.

A sliding mesh method based on the transfinite mortar concept has been successfully developed, thoroughly tested and
verified. It is shown that, in spite of the dynamic and curved nonconforming nature of the meshes, this method is arbitrar-
ily high-order accurate in space, retains the temporal accuracy of a time-marching scheme, is conservative, and does not
change flow characteristics. It sustains these properties even under very stringent, high-speed rotational/sliding conditions.
Furthermore, it is shown that this method minimizes the rotational/sliding speed effects when it is equipped with a high-
order temporal scheme. Although not strictly free-stream preserving, it approaches this property in an exponential way,
and the mesh-induced numerical disturbances are shown to be negligibly small even on a very coarse mesh and moderate
polynomial degrees. The implementation steps, the extension to 3D, and the treatment of singularity, are also discussed.
The simulations of a matrix of rotating square cylinders in both 2D and 3D have demonstrated the method’s capability of
simultaneously handling multiple objects. This method is by far the most thoroughly studied and most accurate method
for studying flows about rotating/sliding geometries. It can be further extended and applied to study a wide range of very
challenging flow problems, such as propellers, wind turbines, stirred tanks, to name just a few. As a concluding remark, we
emphasize that this method is readily implementable to many other high-order methods as well.

CRediT authorship contribution statement

Bin Zhang: Conceptualization, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original
draft, Writing – review & editing. Chunlei Liang: Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

This work was supported by the Office of Naval Research (Grant N00014-20-1-2007) and the George Washington Univer-
sity.

Appendix A. Comparison of iso-parametric mapping and transfinite mapping

Transfinite mapping can minimizes geometric errors, whereas iso-parametric mapping always carries a truncation error
but monolithically approaches transfinite mapping as the order increases. We compare these two types of mappings through
a 1D and a 2D example. The 1D example is a circular arc with θ1 = 0◦ , θ2 = 10◦ , R = 1, and xc = (0, 0). We calculate the
radius difference �R between the exact radius and the numerical ones calculated using the coordinates from the mappings.
Fig. 30 reveals that the iso-parametric mapping represents the circular arc exactly only at the nodal points. For non-nodal
points, the error overall decreases as the order increases. On the other hand, the transfinite mapping always represents the
circular arc exactly with the errors always being at the level of machine precision.

The 2D geometry for this test is similar to that in Fig. 5, i.e., with three straight edges and one circular-arc edge. More
specifically, we have chosen: x1 = (R cos θ1 + xc, R sin θ1 + yc), x2 = (R cos θ2 + xc, R sin θ2 + yc), x3 = ((R/2) tan θ2, R/2),
x4 = ((R/2) tan θ1, R/2), where R = 2, θ1 = −110◦ , θ2 = −70◦ , and (xc, yc) = (0, R). Denote the coordinates from linear,
quadratic, cubic, and transfinite mappings as xL, xQ, xC, and xT, respectively. There is no direct way to measure which of
these coordinates are more accurate. Instead, we take the transfinite mapping as a reference, and plot the contours of the L2
norm of coordinate difference (i.e., ‖x∗ − xT‖, where ‘∗’ represents ‘L’, or ‘Q’, or ‘C’) in Fig. 31. The minimal differences are
seen around the nodal points and along the straight edges. The reason is that these geometric components are represented
in the same way in all the mappings including the transfinite mapping. Overall, the L2 norm decreases as the order of
the iso-parametric mapping increases, i.e., the iso-parametric mapping approaches the transfinite mapping as the order
increases.
27

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Fig. 30. Comparison of iso-parametric mapping and transfinite mapping for approximating a circular arc.

Fig. 31. Difference between iso-parametric and transfinite mappings: left, ‖xL − xT‖; middle, ‖xQ − xT‖; right, ‖xC − xT‖.

Appendix B. Proof of global conservation

Global conservation means that, without the presence of source in a domain, the net gain or loss of Q̃ over the whole
domain is determined solely by fluxes through the boundaries. Inspired by the works in [15,28], we prove in what follows
that the present method is globally conservative.

Define the following quadrature weights wi and w j at the SPs such that

1∫
0

1∫
0

φ(ξ,η)dξdη =
N∑

j=1

N∑
i=1

φi j wi w j, ∀φ ∈ PN−1,N−1. (B.1)

Multiply the discretized equation (34) by the weights and sum over all the SPs,

N∑
j=1

N∑
i=1

∂Q̃

∂t

∣∣∣∣
i j

wi w j = −
N∑

j=1

N∑
i=1

[
∂ F̂

∂ξ
+ ∂Ĝ

∂η

]
i j

wi w j. (B.2)

Since the quadrature is exact for PN−1,N−1 by its definition, and the terms ∂Q̃/∂t , ∂ F̂/∂ξ , ∂Ĝ/∂η are in PN−1,N−1, (B.2) is
thus equivalent to

1∫
0

1∫
0

∂Q̃

∂t
dξdη =

1∫
0

1∫
0

[
∂ F̂

∂ξ
+ ∂Ĝ

∂η

]
dξdη. (B.3)

Take the time derivative out, and apply the divergence theorem to the right hand side,
28

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
∂

∂t

1∫
0

1∫
0

Q̃dξdη =
1∫

0

F̂(0, η)dη −
1∫

0

F̂(1, η)dη +
1∫

0

Ĝ(ξ,0)dξ −
1∫

0

Ĝ(ξ,1)dξ, (B.4)

where, by definition, the corrected fluxes F̂ and Ĝ take the common values on cell interfaces. For a conforming mesh, if
we sum (B.4) over all the mesh elements, the interior flux terms cancel on cell interfaces, leaving only the flux terms on
domain boundaries. This confirms that the change of Q̃ over the whole domain depends only on boundary fluxes, i.e., the
scheme is globally conservative on a conforming mesh.

For nonconforming sliding mesh, we need to show that the total flux on the left side of a sliding interface equals that
on the right side so that global conservation is satisfied. Since we have required (66) to hold for both inviscid and viscous
fluxes with any h j , and the h j ’s form a basis of PN−1, the following relation thus holds,

m∑
k=1

ok+sk∫
ok

(
F̃ �(ξ) − F̃ k (z)

)
ψ(ξ) dξ = 0, ∀ψ ∈ PN−1. (B.5)

Substitution of ψ = 1 ∈ PN−1 into the above equation gives

m∑
k=1

ok+sk∫
ok

(
F̃ �(ξ) − F̃ k (z)

)
dξ = 0. (B.6)

Rearrange the above equation to

m∑
k=1

ok+sk∫
ok

F̃ �(ξ)dξ =
m∑

k=1

ok+sk∫
ok

F̃ k (z)dξ,

then change the variable of integration on the right hand side,

1∫
0

F̃ �(ξ)dξ =
m∑

k=1

1∫
0

sk F̃ k (z)dz,

and now consider the relation in (64) (which also applies to viscous flux),

1∫
0

F̃ �(ξ)dξ =
m∑

k=1

1∫
0

F̆ k (z)dz. (B.7)

The relation in (B.7) is valid for any sliding cell face �, and it says that the flux on a sliding cell face equals the total flux
on all its mortars. Since each mortar is unique and does not overlap with other mortars (see Fig. 3), summing (B.7) over all
the cell faces on the left side of a sliding interface will lead to the conclusion that the total flux on the left side of a sliding
interface equals the total flux on all the mortars. The same conclusion also holds on the right side of a sliding interface.
Therefore, the total flux on the left side of a sliding interface equals that on the right side, i.e., the scheme satisfies global
conservation. It is worth noting that, in Eq. (B.7), the variable F̆ k (see Eq. (63) for the definition) has already “absorbed”
the exact metrics (such as the exact OS relations in Eqs. (43)-(45), and the exact normal in Eq. (61)) of the transfinite
mortar. The Introduction of this new variable/notation has greatly simplified the proof. We monitored the net fluxes on
each nonconforming interface for all the tests, and it was observed that the values are always at the level of machine
precision.

Appendix C. Proof of outflow condition

In a hyperbolic system, the propagation of waves should not be affected by downwind signals, which is called the outflow
condition. When it comes to our case, satisfying the outflow condition means that if we project a variable from a cell face
to its mortars, and then immediately project back, the value of the variable should not change. In what follows, we prove
that the present sliding-mesh method satisfies this condition. Since the two projection methods in Sec. 4.3.3 are equivalent,
we only show the poof on the first method for simplicity.

Let φ� denote a variable on a cell face, φk the projected variable on the k-th mortar, and φ∗� the variable from back
projection. Then, the problem becomes proving that φ∗� = φ� .

Start with the following polynomial representations of these variables,

φ�(ξ) =
N∑

φ�
i hi(ξ), φk (z) =

N∑
φ

k
i hi(z), φ∗�(ξ) =

N∑
φ∗�

i hi(ξ). (C.1)

i=1 i=1 i=1

29

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
The projection from cell face to mortar follows (48),

1∫
0

(
φk (z) − φ�(ξ)

)
h j(z) dz = 0, ∀ j = 1,2, ..., N, (C.2)

from which we can get the projected variable on the mortar,

φk = P�→kφ� = M−1S�→kφ�. (C.3)

Now, project φk back to the cell face following (56),

m∑
k=1

ok+sk∫
ok

(
φ∗�(ξ) − φk (z)

)
h j(ξ) dξ = 0, ∀ j = 1,2, ..., N, (C.4)

from which we can get the variable from back projection,

φ∗� =
m∑

k=1

Pk→�φk =
m∑

k=1

skM−1Sk→�φk . (C.5)

Since the h j ’s form a basis for PN−1, from (C.2) we can get

1∫
0

(
φk (z) − φ�(ξ)

)
ψ dz = 0, ∀ψ ∈ PN−1. (C.6)

Because h j(ξ) = h j(ok + skz) ∈ PN−1, setting ψ = h j(ξ) gives

1∫
0

(
φk (z) − φ�(ξ)

)
h j(ξ) dz = 0,

now rearrange the terms and change the variable of integration,

ok+sk∫
ok

φ�(ξ)h j(ξ) dξ = sk

1∫
0

φk (z)h j(ξ) dz. (C.7)

Apply (C.7) to all the mortars of � and sum them up,

m∑
k=1

ok+sk∫
ok

φ�(ξ)h j(ξ) dξ =
m∑

k=1

sk

1∫
0

φk (z)h j(ξ) dz,

1∫
0

φ�(ξ)h j(ξ) dξ =
m∑

k=1

sk

1∫
0

φk (z)h j(ξ) dz, (C.8)

At the same time, rearranging (C.4) and changing the variable of integration will give

1∫
0

φ∗�(ξ)h j(ξ)dξ =
m∑

k=1

sk

1∫
0

φk (z)h j(ξ) dz. (C.9)

Note that (C.8) and (C.9) have exactly the same right hand side, therefore

1∫
0

φ∗�(ξ)h j(ξ)dξ =
1∫

0

φ�(ξ)h j(ξ)dξ, ∀ j = 1,2, ..., N, (C.10)

which is equivalent to the following equation system,

Mφ∗� = Mφ�.
30

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
Because M is invertible, we therefore have

φ∗� = M−1Mφ�,

that is

φ∗� = φ�, (C.11)

which is exactly what we were expecting, and the present method therefore satisfies the outflow condition. If we substitute
(C.3) into (C.5) and take (C.11) into account, we have the following relation

φ∗� =
m∑

k=1

Pk→�P�→kφ� = φ�, (C.12)

which readily reveals a property of the projection matrices,

m∑
k=1

Pk→�P�→k = I, (C.13)

where I is the identity matrix.
We have numerically tested (C.13) on many cases, and it holds perfectly without exception. As it was noted in [28]

that satisfaction of the outflow condition ensures that a method does not change the characteristics of the flow field, and
therefore there should not be a downgrade on the maximum allowable time step size compared with the original method
on conforming mesh. This is consistent with our observation through many tests that the present method does not affect
the stability of the original conforming-mesh method.

References

[1] A. Bakker, R.D. LaRoche, M.-H. Wang, R.V. Calabrese, Sliding mesh simulation of laminar flow in stirred reactors, Chem. Eng. Res. Des. 75 (1) (1997)
42–44.

[2] R. Steijl, G. Barakos, Sliding mesh algorithm for CFD analysis of helicopter rotor-fuselage aerodynamics, Int. J. Numer. Methods Fluids 58 (5) (2008)
527–549.

[3] T. Kinsey, G. Dumas, Parametric study of an oscillating airfoil in a power-extraction regime, AIAA J. 46 (2008) 1318–1330.
[4] M.W. Sarwar, T. Ishihara, Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures,

J. Wind Eng. Ind. Aerodyn. 98 (12) (2010) 701–711.
[5] J.L. Steger, F.C. Dougherty, J.A. Benek, A Chimera grid scheme, in: Proceedings of the Applied Mechanics, Bioengineering, and Fluids Engineering Con-

ference, Houston, TX, 1983, pp. 59–69.
[6] R. Mittal, G. Iaccarino, Immersed boundary methods, Annu. Rev. Fluid Mech. 37 (2005) 239–261.
[7] Z.J. Wang, K. Fidkowski, R. Abgrall, F. Bassi, et al., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids 72 (8) (2013)

811–845.
[8] W.H. Reed, T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Rep. LA-UR-73-479, CONF-730414-2, Los Alamos Scientific

Laboratory, 1973.
[9] B. Cockburn, G.E. Karniadakis, C.-W. Shu (Eds.), Discontinuous Galerkin Methods: Theory, Computation and Applications, Lecture Notes in Computational

Science and Engineering, vol. 11, Springer, New York, 2011.
[10] A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion, J. Comput. Phys. 54 (3) (1984) 468–488.
[11] G.E. Karniadakis, S.J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2 edn., Oxford University Press, Oxford, 2005.
[12] D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Springer Science & Business

Media, 2009.
[13] Z.J. Wang, Spectral (finite) volume method for conservation laws on unstructured grids: basic formulation, J. Comput. Phys. 178 (2002) 210–251.
[14] Z.J. Wang, Y. Liu, Spectral (finite) volume method for conservation laws on unstructured grids, II: extension to two-dimensional scalar equation, J.

Comput. Phys. 179 (2) (2002) 665–697.
[15] D.A. Kopriva, J.H. Kolias, A conservative staggered-grid Chebyshev multidomain method for compressible flows, J. Comput. Phys. 125 (1996) 244–261.
[16] D.A. Kopriva, A staggered-grid multidomain spectral method for the compressible Navier-Stokes equations, J. Comput. Phys. 143 (1998) 125–158.
[17] Y. Liu, M. Vinokur, Z.J. Wang, Spectral difference method for unstructured grids. I: basic formulation, J. Comput. Phys. 216 (2006) 780–801.
[18] Z.J. Wang, Y. Liu, G. May, A. Jameson, Spectral difference method for unstructured grids, II: extension to the Euler equations, J. Sci. Comput. 32 (2007)

45–71.
[19] A. Balan, G. May, J. Schöberl, A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements, J. Comput. Phys.

231 (5) (2012) 2359–2375.
[20] H.T. Huynh, A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods, AIAA paper 2007-4079, 2007.
[21] H.T. Huynh, A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion, AIAA paper 2009-403, 2009.
[22] Z.J. Wang, H. Gao, A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for

conservation laws on mixed grids, J. Comput. Phys. 228 (2009) 8161–8186.
[23] A. Jameson, P.E. Vincent, P. Castonguay, On the non-linear stability of flux reconstruction schemes, J. Sci. Comput. 50 (2) (2012) 434–445.
[24] Z.J. Wang, H.T. Huynh, A review of flux reconstruction or correction procedure via reconstruction method for the Navier-Stokes equations, Mech. Eng.

Rev. 3 (1) (2016) 15–00475.
[25] E. Ferrer, R. Willden, A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J. Comput. Phys.

231 (21) (2012) 7037–7056.
[26] L. Ramírez, C. Foulquié, X. Nogueira, S. Khelladi, J.-C. Chassaing, I. Colominas, New high-resolution-preserving sliding mesh techniques for higher-order

finite volume schemes, Comput. Fluids 118 (2015) 114–130.
31

http://refhub.elsevier.com/S0021-9991(21)00417-4/bib5E5E421E7E88100E2AAAB2DF922A80DFs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib5E5E421E7E88100E2AAAB2DF922A80DFs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibEF6B528B8C072AFDB53F2DBEE070E245s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibEF6B528B8C072AFDB53F2DBEE070E245s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibEA3810AFE4CB3A59789D84161BB88354s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibD118D43BB38400990FFEC3D230B8C619s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibD118D43BB38400990FFEC3D230B8C619s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib666EC2599B1A0873797147BB251373E0s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib666EC2599B1A0873797147BB251373E0s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib7A47FA3BB1D19366AE17EA4DB99F4A16s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib4D7D6C2C570CD7DA3A0DEA765547B178s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib4D7D6C2C570CD7DA3A0DEA765547B178s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib82DC3856D1B0F7DCF8F6E1C00022767Ds1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib82DC3856D1B0F7DCF8F6E1C00022767Ds1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib3155A39530CA795369659A02903AA8E5s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib3155A39530CA795369659A02903AA8E5s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibED947CC7AE13FC21D35D4AF9B030197Cs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib9E5998AF931AFB567B0DC411BD01F1E8s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib765675AF6AA6E49E2A18CA07B1D01A5Bs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib765675AF6AA6E49E2A18CA07B1D01A5Bs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE3B15BBE24255F9D9ACC31DA24E92A62s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib75C2E212BD456B648ACFBCD976EF1FB4s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib75C2E212BD456B648ACFBCD976EF1FB4s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib306C5720FEE43E7DCD455ACD419BEDC2s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibA7675D557F3F46D416A8700B02375606s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib240EE9EBBFA4E9B58A322E4546609421s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib8B4D99864E6D4AB9B355AEC70A574EEBs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib8B4D99864E6D4AB9B355AEC70A574EEBs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE7293DD36995462011790E82AA1BDC4Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE7293DD36995462011790E82AA1BDC4Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib6EECBF2A049F9B282BA465C2FE79CA5Cs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib64329BE07DFB892231EE905E9ED673B8s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib502D99CA58B3770C1AF3F87670406C94s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib502D99CA58B3770C1AF3F87670406C94s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib1D34FDF47217AB3733637807F14BFDB8s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib3CA2C8FC2A1F9D7A146700E4D58EEC55s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib3CA2C8FC2A1F9D7A146700E4D58EEC55s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibDC221926B8349A5DA760DE3D18D720C0s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibDC221926B8349A5DA760DE3D18D720C0s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib39C588D35763937AA8245216BD1B24F9s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib39C588D35763937AA8245216BD1B24F9s1

B. Zhang and C. Liang Journal of Computational Physics 443 (2021) 110522
[27] C.A. Mavriplis, Nonconforming Discretizations and a Posteriori Error Estimates for Adaptive Spectral Element Techniques, Ph.D. thesis, M.I.T., 1989.
[28] D.A. Kopriva, A conservative staggered-grid Chebyshev multidomain method for compressible flows. II. A semi-structured method, J. Comput. Phys. 128

(1996) 475–488.
[29] D.A. Kopriva, S.L. Woodruff, M.Y. Hussaini, Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method,

Int. J. Numer. Methods Eng. 53 (1) (2002) 105–122.
[30] B. Zhang, C. Liang, A simple, efficient, and high-order accurate curved sliding-mesh interface approach to spectral difference method on coupled

rotating and stationary domains, J. Comput. Phys. 295 (2015) 147–160.
[31] B. Zhang, C. Liang, J. Yang, Y. Rong, A 2D parallel high-order sliding and deforming spectral difference method, Comput. Fluids 139 (2016) 184–196.
[32] B. Zhang, C. Liang, A high-order sliding-mesh spectral difference solver for simulating unsteady flows around rotating objects, in: 31st Symposium on

Naval Hydrodynamics, Monterey, CA, 2016.
[33] B. Zhang, Z. Qiu, C. Liang, A flux reconstruction method with nonuniform sliding-mesh interfaces for simulating rotating flows, AIAA paper 2018-1094,

2018.
[34] Z. Qiu, B. Zhang, C. Liang, M. Xu, A high-order solver for simulating vortex-induced vibrations using the sliding-mesh spectral difference method and

hybrid grids, Int. J. Numer. Methods Fluids 90 (4) (2019) 171–194.
[35] B. Zhang, C. Liang, High-order numerical simulation of flows over rotating cylinders of various cross-sectional shapes, AIAA paper 2019-3430, 2019.
[36] B. Zhang, C. Liang, High-order numerical simulation of flapping wing for energy harvesting, AIAA paper 2019-3338, 2019.
[37] B. Zhang, C. Ding, C. Liang, High-order implicit large-eddy simulation of flow over a marine propeller, Comput. Fluids 224 (2021) 104967.
[38] J. Yang, B. Zhang, C. Liang, Y. Rong, A high-order flux reconstruction method with adaptive mesh refinement and artificial diffusivity on unstructured

moving/deforming mesh for shock capturing, Comput. Fluids 139 (2016) 17–35.
[39] I. Ergatoudis, B.M. Irons, O.C. Zienkiewicz, Curved, isoparametric, “quadrilateral” elements for finite element analysis, Int. J. Solids Struct. 4 (1) (1968)

31–42.
[40] V.V. Rusanov, Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR 1 (1961) 267–279.
[41] J.F.B.M. Kraaijevanger, Contractivity of Runge-Kutta methods, BIT Numer. Math. 31 (3) (1991) 482–528.
[42] S. Ruuth, Global optimization of explicit strong-stability-preserving Runge-Kutta methods, Math. Comput. 75 (253) (2006) 183–207.
[43] S. Gottlieb, S.J. Ruuth, Optimal strong-stability-preserving time-stepping schemes with fast downwind spatial discretizations, J. Sci. Comput. 27 (1–3)

(2006) 289–303.
[44] P.D. Thomas, C.K. Lombard, Geometric conservation law and its application to flow computations on moving grids, AIAA J. 17 (1979) 1030–1037.
[45] C.A.A. Minoli, D.A. Kopriva, Discontinuous Galerkin spectral element approximations on moving meshes, J. Comput. Phys. 230 (5) (2011) 1876–1902.
[46] W.J. Gordon, C.A. Hall, Transfinite element methods: blending-function interpolation over arbitrary curved element domains, Numer. Math. 21 (2)

(1973) 109–129.
[47] W.J. Gordon, C.A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, Int. J. Numer. Methods Eng. 7 (4) (1973)

461–477.
[48] R.J. Spiteri, S.J. Ruuth, A new class of optimal high-order strong-stability-preserving time discretization methods, SIAM J. Numer. Anal. 40 (2002)

469–491.
[49] D.I. Ketcheson, Highly efficient strong stability-preserving Runge–Kutta methods with low-storage implementations, SIAM J. Sci. Comput. 30 (4) (2008)

2113–2136.
[50] D.A. Kopriva, Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput. 26 (3) (2006) 301.
[51] D.A. Kopriva, F.J. Hindenlang, T. Bolemann, G.J. Gassner, Free-stream preservation for curved geometrically non-conforming discontinuous Galerkin

spectral elements, J. Sci. Comput. 79 (3) (2019) 1389–1408.
[52] J. Hunt, A. Wray, P. Moin, Eddies, streams, and convergence zones in turbulent flows, in: Proceedings of CTR Summer Program, Center for Turbulence

Research, 1988, pp. 193–208.
32

http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE037DF8C312BA479FCB8D8D9CF77C570s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib459D7CB29B7B75FA8D425B25C2DB7EF4s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib459D7CB29B7B75FA8D425B25C2DB7EF4s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib4CA39956EBF627F5B2247EE588760F2Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib4CA39956EBF627F5B2247EE588760F2Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibC72D3E3D050043A3A3CCB3C2FFBC9EECs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibC72D3E3D050043A3A3CCB3C2FFBC9EECs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibD5D582308E652725F7B5D01ECBA8C21Es1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib761DADAA9AB0CEA673BAD87862AC0259s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib761DADAA9AB0CEA673BAD87862AC0259s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibA14C80723162AA193BAEEE737876075As1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibA14C80723162AA193BAEEE737876075As1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib948CA84419C931E31E496F7738C357EFs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib948CA84419C931E31E496F7738C357EFs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib5B912F779F701D97CAFAF98F254FB922s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib02472658F52209626AB279EAA200857Ds1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE63CEB655C00A139459ECEB88C84E9CFs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE8934E50FB82C6C5BC9837DE0B22E52Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibE8934E50FB82C6C5BC9837DE0B22E52Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibB65D8AD82D2B83303C7459D2DCCC5DE5s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibB65D8AD82D2B83303C7459D2DCCC5DE5s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib501E6B68FD1BEE3B4FEB9640D1F0915As1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib57B647791C260A6F948D351E5FA45599s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib6C70CF243E23277AB5A6559C82852138s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib503A0C128B204BE6DAEDC87E98910DC6s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib503A0C128B204BE6DAEDC87E98910DC6s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib4DED8DD0CD1335508B918249C2E21837s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib85836F1A982CD3AFCDC8ABA4573B1667s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib75AB83506FB1B74A9D5D15BFB96DF726s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib75AB83506FB1B74A9D5D15BFB96DF726s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib07E69D81CB0B90D13A10155D5013C78Cs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib07E69D81CB0B90D13A10155D5013C78Cs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib3827A37C2147F522A37EB96CBED2D501s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib3827A37C2147F522A37EB96CBED2D501s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibF504A28BE4BDF003042F2995F7DBFAEBs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibF504A28BE4BDF003042F2995F7DBFAEBs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibA1041093BB108EB10E380D1D65646714s1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibBC002C5774B8F1BFDF27CE94355E149Cs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bibBC002C5774B8F1BFDF27CE94355E149Cs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib635268491A6A332AAD2031F0F1B5CB1Fs1
http://refhub.elsevier.com/S0021-9991(21)00417-4/bib635268491A6A332AAD2031F0F1B5CB1Fs1

	A conservative high-order method utilizing dynamic transfinite mortar elements for flow simulations on curved nonconforming...
	1 Introduction
	2 The flow equations
	3 Flux reconstruction method on moving grid
	3.1 Grid mapping
	3.2 Construction of solution and flux polynomials
	3.3 Flux reconstruction
	3.4 Time marching
	3.5 Free-stream preservation

	4 A nonconforming sliding-mesh method
	4.1 Sliding mesh and mortar elements
	4.2 Two mortar types
	4.3 Projection procedures
	4.3.1 Project local values to mortars
	4.3.2 Compute common values on mortars
	4.3.3 Project common values back to cell faces
	4.3.4 Treatment of viscous fluxes

	4.4 On the implementation
	4.4.1 Read meshes
	4.4.2 Reorder sliding cell faces
	4.4.3 Correct sliding interface
	4.4.4 Update connectivities
	4.4.5 Compute fluxes

	4.5 Extension to 3D

	5 Examples
	5.1 Spatial accuracy
	5.1.1 Euler vortex flow
	5.1.2 Taylor-Couette flow

	5.2 Temporal accuracy
	5.3 Conservation
	5.4 Free-stream preservation
	5.5 Flow over a rotating square cylinder
	5.6 Flow over multiple rotating square cylinders
	5.6.1 Case 1
	5.6.2 Case 2

	5.7 Flow over 3D rotating square cylinders

	6 Summary
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Comparison of iso-parametric mapping and transfinite mapping
	Appendix B Proof of global conservation
	Appendix C Proof of outflow condition
	References

