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a b s t r a c t 

We report the first high-order eddy-resolving simulation of flow over a marine propeller using a recently 

developed high-order sliding-mesh method. This method employs the flux reconstruction framework and 

a new dynamic curved mortar approach to handle the complex rotating geometries. For a wide range of 

working conditions, it is validated to predict the loads very accurately against experiments. The method’s 

low-dissipation characteristic has allowed the capturing of a broad spectrum of turbulence structures for 

very long distances even on a very coarse grid. Comparison with a previous low-order simulation is also 

carried out to show the low-dissipation advantage of the present simulations. From detailed load analysis, 

the major loads and their distributions and time and frequency scales are identified. Visualizations of the 

instantaneous, phase-averaged, and time-averaged flow fields have revealed the processes of tip vortex 

formation, major vortex evolutions, and flow instability developments at different working conditions. 

The effects of different fairwaters on the propeller’s overall performance are also quantitatively assessed. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Numerical techniques for studying marine propellers have seen 

mmense advances in the past decades. For example, the lifting 

urface procedures based on vortex lattice and panel methods have 

een widely used in propeller design. A representative program in 

his category is the PSF code developed at MIT in the1980s [1] . 

he vortex lattice and panel methods have very quick turnaround 

ime, and can predict propeller loads rather accurately when com- 

ined with empirical vortex and wake models. They are, how- 

ver, incapable of revealing the fine details of a flow field for in- 

epth analysis of flow physics such as flow instability and acous- 

ics. Since the1990s, the Reynolds-averaged Navier Stokes (RANS) 

ethods have gained popularity in simulating propeller flows. The 

ANS methods do provide richer flow field information than the 

nviscid vortex lattice and panel methods. But the averaging na- 

ure of a RANS (even an unsteady RANS) method still smooths 

ut a lot of flow details, especially the small and intermediate 

nstantaneous eddies. In more recent years, the increasing high- 

erformance computing power has allowed eddy-resolving tech- 

iques, such as detached-eddy simulation (DES) and large-eddy 

imulation (LES), to have been performed on marine propellers 
∗ Corresponding author. 
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n the scale of millions or even trillions of grid elements. For in- 

tance, Muscari et al. [2] and Di Mascio et al. [3] employed DES 

o study the vortex dynamics of a propeller in different flow con- 

itions. Verma et al. [4] and Jang and Mahesh [5] used LES to 

nvestigate the flow around a reverse rotating marine propeller. 

alaras et al. [6] applied an immersed boundary based LES tech- 

ique to explore the flow around a propeller with and without an 

pstream appendage. Kumar and Mahesh [7] systematically stud- 

ed the wake instability of a propeller using LES. However, all the 

forementioned DES and LES approaches are of low-order accura- 

ies (at most second-order) that could potentially introduce large 

umerical dissipation and dispersion to a flow field. 

On the other hand, high-order (third and above) methods, espe- 

ially polynomial based high-order methods, are seeing rapid de- 

elopment in recent years. High-order methods show many ad- 

antages over the traditional low-order ones. For example, for the 

ame number of degrees of freedom, a high-order method pro- 

uces solutions with much smaller numerical error than a low- 

rder method does. Furthermore, a high-order method can employ 

igh-order unstructured curved meshes that approximate curved 

eometries much more accurately than the linear meshes for a 

ow-order method. The most popular high-order methods include 

he discontinuous Galerkin (DG) method [8,9] , the spectral element 

ethod [10–12] , the spectral volume method [13,14] , the spectral 

ifference (SD) method [15–20] , etc. Among these methods, the SD 

ethod solves equations in differential form directly, and is one of 

https://doi.org/10.1016/j.compfluid.2021.104967
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2021.104967&domain=pdf
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he most efficient high-order methods. Recently, the ideas of col- 

ocating solution and flux points of the SD method and correcting 

uxes using higher-degree polynomials have led to an even more 

fficient high-order method — the flux reconstruction (FR) method 

21,22] , also known as the correction procedure via reconstruc- 

ion (CPR) [23] . Besides its better efficiency, by choosing different 

orrection polynomials, the FR method can recover many existing 

igh-order schemes such as DG and SD, and can even produce new 

chemes that had never been reported before. The stability of the 

R method has been proved in [24] . The most recent developments 

n the FR method are summarized in [25] . 

To the authors’ knowledge, there is still no reported high-order 

ddy-resolving simulation of marine propellers. One important rea- 

on is the severe challenge on how to treat the complex rotational 

eometry of a propeller in a high-order method without deterio- 

ating the method’s accuracies in both space and time. To tackle 

his challenge, Zhang and Liang [26,27] developed a high-order 

liding-mesh method for the SD and FR methods by introducing 

he concept of curved dynamic mortar elements. A parallelization 

pproach was proposed for this method in [28] , and the exten- 

ion to three-dimensions was achieved in [29] . More recently, this 

ethod was further extended to sliding interfaces with general 

onuniform meshes [30] . An updated version that is high-order 

n time, arbitrarily high-order in space, provably conservative, and 

rovably outflow preservative has also been established [31] . In the 

resent work, we apply this method to implicit LES (without us- 

ng an explicit sub-grid-scale model) [32–36] of the loads and flow 

elds of a real marine propeller at various working conditions. This 

s the first time a high-order method being applied to simulate a 

arine propeller. 

The rest of this paper is organized as follows. Section 2 gives a 

rief description of the flow equations and the numerical methods. 

ection 3 details the simulation setup. Simulation results and dis- 

ussions are reported in Section 4 . Finally, Section 5 concludes this 

aper. 

. Numerical methods 

.1. The physical equations 

We numerically solve the following three-dimensional unsteady 

avier-Stokes equations in a conservative form, 

∂Q 

∂t 
+ 

∂F 

∂x 
+ 

∂G 

∂y 
+ 

∂H 

∂z 
= 0 , (1) 

here Q is the vector of conservative variables, F , G and H are

he flux vectors in each coordinate direction. These terms have the 

ollowing expressions, 

 = [ ρ ρu ρv ρw E] T , (2) 

 = F inv (Q ) + F vis (Q , ∇Q ) , (3) 

 = G inv (Q ) + G vis (Q , ∇Q ) , (4) 

 = H inv (Q ) + H vis (Q , ∇Q ) , (5) 

here ρ is fluid density, u, v and w are the velocity components, E

s the total energy per volume defined as E = p/ (γ − 1) + 

1 
2 ρ(u 2 +

 

2 + w 

2 ) , p is pressure, γ is the ratio of specific heats and is set to

.4. 

The fluxes have been split into inviscid and viscous parts. The 

nviscid fluxes are only functions of the conservative variables and 
2 
ave the following expressions, 

F inv = 

⎡ ⎢ ⎢ ⎣ 

ρu 

ρu 

2 + p 
ρu v 
ρuw 

u (E + p) 

⎤ ⎥ ⎥ ⎦ 

, G inv = 

⎡ ⎢ ⎢ ⎣ 

ρv 
ρu v 

ρv 2 + p 
ρv w 

v (E + p) 

⎤ ⎥ ⎥ ⎦ 

, 

 inv = 

⎡ ⎢ ⎢ ⎣ 

ρw 

ρuw 

ρv w 

ρw 

2 + p 
w (E + p) 

⎤ ⎥ ⎥ ⎦ 

. (6) 

he viscous fluxes are functions of the conservative variables and 

heir gradients. The expressions are 

 vis = −

⎡ ⎢ ⎢ ⎣ 

0 

τxx 

τyx 

τzx 

uτxx + v τyx + wτzx + κT x 

⎤ ⎥ ⎥ ⎦ 

, (7) 

 vis = −

⎡ ⎢ ⎢ ⎣ 

0 

τxy 

τyy 

τzy 

uτxy + v τyy + wτzy + κT y 

⎤ ⎥ ⎥ ⎦ 

, (8) 

 vis = −

⎡ ⎢ ⎢ ⎣ 

0 

τxz 

τyz 

τzz 

uτxz + v τyz + wτzz + κT y 

⎤ ⎥ ⎥ ⎦ 

, (9) 

here τi j is shear stress tensor which is related to velocity gra- 

ients as τi j = μ(u i, j + u j,i ) + λδi j u k,k , μ is dynamic viscosity, λ = 

2 / 3 μ based on Stokes’ hypothesis, δi j is the Kronecker delta, κ
s thermal conductivity, T is temperature that is related to density 

nd pressure through the ideal gas law p = ρR T , where R is the

as constant. 

.2. The computational equations 

As will be discussed later, we map each moving grid element 

rom the physical space to a stationary standard cubic element 

n the computational space where the equations are solved. As- 

ume the mapping is: t = τ, x = x (τ, ξ , η, ζ ) , y = y (τ, ξ , η, ζ ) and

 = z(τ, ξ , η, ζ ) , where (τ, ξ , η, ζ ) are the computational time and

pace. It can be shown that the flow equations will take the fol- 

owing conservative form in the computational space, 

∂ ̃  Q 

∂t 
+ 

∂ ̃  F 

∂ξ
+ 

∂ ̃  G 

∂η
+ 

∂ ̃  H 

∂ζ
= 0 , (10) 

nd the computational variable and fluxes are related to the phys- 

cal ones through 

 

 

 

˜ Q ˜ F ˜ G ˜ H 

⎤ ⎥ ⎦ 

= |J |J 

−1 

⎡ ⎢ ⎣ 

Q 

F 

G 

H 

⎤ ⎥ ⎦ 

, (11) 

here |J | is determinant of the Jacobian matrix and J 

−1 is the 

nverse Jacobian matrix, and their expressions are 

|J | = 

∣∣∣∣ ∂(t, x, y, z) 

∂(τ, ξ , η, ζ ) 

∣∣∣∣ = 

∣∣∣∣∣∣∣
1 0 0 0 

x t x ξ x η x ζ
y t y ξ y η y zη
z t z ξ z η z ζ

∣∣∣∣∣∣∣, 



B. Zhang, C. Ding and C. Liang Computers and Fluids 224 (2021) 104967 

Fig. 1. Schematic of solution points (circles) and flux points (squares) in the ξ - η

plane for a fourth-order FR method. 
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−1 = 

∂(τ, ξ , η, ζ ) 

∂(t, x, y, z) 
= 

⎡ ⎢ ⎢ ⎣ 

1 0 0 0 

ξt ξx ξy ξz 

ηt ηx ηy ηz 

ζt ζx ζy ζz 

⎤ ⎥ ⎥ ⎦ 

. (12) 

Besides the flow equations, the Geometric Conservation Law 

GCL) [37] also needs to be numerically satisfied to ensure free- 

tream preservation on moving grids. The GCL equations and the 

teps for solving them are described in our previous papers [27,29] . 

.3. The flux reconstruction method 

The meshes in this work consist of hexahedral elements only. 

he first step of the FR method is to map each hexahedral element 

o a standard cubic element of unit size, i.e., 0 ≤ ξ , η, ζ ≤ 1 . This

an be done using the following isoparametric mapping, 
 

x 
y 
z 

] 

= 

K ∑ 

i =1 

M i (ξ , η, ζ ) 

[ 

x i (t) 
y i (t) 
z i (t) 

] 

, (13) 

here K is the number of nodes of a hexahedral element, M i (de- 

ailed expressions can be found in, for example, [38] ) is the shape 

unction of the i -th node, and (x i , y i , z i ) are the coordinates of the

 -th node. 

Next, solution points (SPs, denoted by X s ) and flux points (FPs, 

enoted by X f ) are defined along each coordinate direction in the 

tandard element. Fig. 1 shows a schematic of the distribution of 

he SPs and FPs in the ξ − η plane for a fourth-order FR method. 

enerally, for an N-th order FR scheme, there are N SPs and FPs in 

ach direction, where the SPs are in the interior and the FPs are 

n the boundaries of the standard element. The SPs and FPs are 

hosen as the Legendre points in this work. 

Subsequently, Lagrange interpolation bases are defined at each 

P. For example, at the i -th SP we have 

 i (X ) = 

N ∏ 

s =1 ,s � = i 

(
X − X s 

X i − X s 

)
. (14) 

he resulting bases also form a basis of polynomials of degrees less 

han or equal to N − 1 , i.e., P N−1 . These interpolation bases allow 
3 
he construction of solution and flux polynomials inside each ele- 

ent through tensor products. For example, 

 

 (ξ , η, ζ ) = 

N ∑ 

k =1 

N ∑ 

j=1 

N ∑ 

i =1 ̃

 Q i jk h i (ξ ) h j (η) h k (ζ ) , (15) 

 

 (ξ , η, ζ ) = 

N ∑ 

k =1 

N ∑ 

j=1 

N ∑ 

i =1 ̃

 F i jk h i (ξ ) h j (η) h k (ζ ) , (16) 

here the subscript i jk denotes the discrete value at the i jk -th SP. 

ll these polynomials are in P N−1 ,N−1 ,N−1 . 

The above solution and flux polynomials are continuous within 

ach element, but discontinuous across cell boundaries. Therefore, 

ommon values need to be defined on cell boundaries. There are 

arious ways to calculate these common values. In this work, the 

ommon solution is calculated as the average of the discontinu- 

us values from the two sides of a boundary; the common invis- 

id fluxes are computed using the Rusanov Riemann solver [39] ; the 

ommon viscous fluxes are computed from the common solutions 

nd common gradients. 

There is one more issue: after taking the first-order spatial 

erivatives in the governing equations, the three flux terms be- 

ome elements in P N−2 ,N−1 ,N−1 , P N−1 ,N−2 ,N−1 , and P N−1 ,N−1 ,N−2 , re- 

pectively, and are inconsistent with the solution term. To fix this 

ssue, the original fluxes need to be reconstructed. This is done by 

sing correction functions that are polynomials of degree no less 

han N. Taking the flux in the ξ direction as an example, the re- 

onstructed flux polynomials is 

 

 (ξ , η, ζ ) = ̃

 F (ξ , η, ζ ) + 

[̃
 F com (0 , η, ζ ) −˜ F (0 , η, ζ ) 

]
· g L (ξ ) 

+ [ ̃  F com (1 , η, ζ ) −˜ F (1 , η, ζ )] · g R (ξ ) (17) 

here ̃  F (ξ , η, ζ ) is from (16) ; ̃  F com represents the common flux on 

 cell boundary; g L and g R are the left and right correction func- 

ions, and are required to at least satisfy 

g L (0) = 1 , g L (1) = 0 , 

 R (0) = 0 , g R (1) = 1 , (18) 

hich ensures that 

 

 (0 , η, ζ ) = ̃

 F com (0 , η, ζ ) , ̂ F (1 , η, ζ ) = ̃

 F com (1 , η, ζ ) , (19)

.e., the reconstructed fluxes still take the common values at cell 

nterfaces. In this work, we have employed the g DG correction func- 

ion [21] . The other two fluxes are reconstructed in the same way. 

Finally, the governing equations can be written in the following 

esidual form, 

∂ ̃  Q 

∂t 

∣∣∣∣
i jk 

= −
[

∂ ̂  F 

∂ξ
+ 

∂ ̂  G 

∂η
+ 

∂ ̂  H 

∂ζ

]
i jk 

= R i jk , i, j, k = 1 , 2 , · · · , N, 

(20) 

here R i jk is the residual at the (i, j, k ) -th SP. This system can be

ime marched using either explicit or implicit temporal schemes. 

.4. A sliding-mesh method 

In three-dimensions, we consider two types of sliding interfaces 

s depicted in Fig. 2 : one is annular, and the other is cylindrical.

o simplify the explanation, we have required the mesh to only 

nmatch in the azimuthal direction but match in the radial (for 

nnular sliding) or axial (for cylindrical sliding) direction. We also 

equire equal mesh size in the azimuthal direction. These restric- 

ions are imposed for explanation purposes only and can be easily 

ifted in practice. More details can be found in our previous papers 

26–31] . 
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Fig. 2. Two types of sliding meshes: left, annular sliding; right, cylindrical sliding. 
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Table 1 

Design parameters of the DTMB 4119 propeller. 

Parameter Value 

Number of blades Z 3 

Diameter D [m] 0.305 

Hub diameter ratio D h /D 0.2 

Design advance ratio J 0.833 

Rotation Right handed 

Section thickness NACA66 modified 

Section mean line NACA, a = 0 . 08 

Table 2 

Geometry of the DTMB 4119 propeller. 

r/R c/D P/D φP [ ◦] t/c f/c

0.2 0.3200 1.105 60.38 0.20550 0.01429 

0.3 0.3625 1.102 49.47 0.15530 0.02318 

0.4 0.4048 1.098 41.15 0.11800 0.02303 

0.5 0.4392 1.093 34.84 0.09016 0.02182 

0.6 0.4610 1.088 29.99 0.06960 0.02072 

0.7 0.4622 1.084 26.24 0.05418 0.02003 

0.8 0.4347 1.081 23.28 0.04206 0.01967 

0.9 0.3613 1.079 20.88 0.03321 0,01817 

0.95 0.2775 1.077 19.84 0.03228 0.01631 

1.0 0.0 1.075 18.89 0.03160 0.01175 
Since the SPs on the two sides of a nonconforming sliding inter- 

ace do not match, we aim to find the best-possible common val- 

es of a variable on the two sides of a sliding interface. This can be

chieved by least-squares projections using mortar elements as the 

ntermediate medium. A mortar element is formed by the overlap- 

ing region of two cell faces. Taking the cylindrical sliding interface 

s an example, based on the assumptions we have made, a cell face 

as two mortar elements as sketched in Fig. 3 . The first step is to

ap a cell face and the mortars to standard ones as shown in the 

ame figure, using, for example, isoparametric mapping or transfi- 

ite mapping. 

Let the (ξ ′ , η′ ) denote the mortar space, then the computa- 

ional and the mortar spaces are related as 

= o + sξ ′ , η = η′ , (21) 

here 0 ≤ ξ , η, ξ ′ , η′ ≤ 1 , and o and s are the offset and scaling of

 mortar with respect to a cell face. 

Let φ represent the variable of interest, and obviously it can be 

epresented by the following polynomials on a cell face 
 and on 

he left side of a mortar �, 


(ξ , η) = 

N ∑ 

j=1 

N ∑ 

i =1 

φ

i j h i (ξ ) h j (η) , (22) 

�,L (ξ ′ , η′ ) = 

N ∑ 

j=1 

N ∑ 

i =1 

φ�,L 
i j 

h i (ξ
′ ) h j (η

′ ) , (23) 

here φ

i j 

and φ�,L 
i j 

are the discrete values at the (i, j) -th SP on 

and the left side of �, respectively. The (φ�,L 
i j 

) ’s are unknown, 

nd can be obtained through the following projection (refer to 

ig. 4 (a)), 
 1 

0 

∫ 1 

0 

(φ�,L (ξ ′ , η′ ) − φ
(ξ , η)) h α(ξ ′ ) h β (η′ ) d ξ ′ d η′ = 0 , 

∀ α, β = 1 , 2 , . . . , N. (24) 

onsidering the relations in (21) , it can be shown that the above 

wo-dimensional projection is equivalent to the following one- 

imensional one, 

 1 

0 

(φ�,L (ξ ′ , X j ) − φ
(ξ , X j )) h α(ξ ′ ) d ξ ′ = 0 , ∀ α = 1 , 2 , . . . , N, 

(25) 

here X j is the coordinate of the j-th SP. Evaluating the above 

quation for all the α’s, we will get a system of equations about 
�,L 
1: N, j 

. Repeating this process for every j, we will obtain every 

�,L 
i j 

. The values on the right side of a mortar, i.e., the (φ�,R 
i j 

) ’s,

an be obtained in the same way. 

After that, we are able to compute a common value on the mor- 

ar, e.g., through averaging or Riemann solver. Let us denote this 

ommon value as ��. We then project this common variable back 
4 
o a cell face from mortars as demonstrated in Fig. 4 (b). And the

rojection is 
 ξ= o 2 

ξ=0 

∫ η=1 

η=0 

(
�
( ξ , η) − ��1 

(
ξ ′ , η′ ))h α( ξ ) h β ( η) d ξd η

+ 

∫ ξ=1 

ξ= o 2 

∫ η=1 

η=0 

(
�
( ξ , η) − ��2 

(
ξ ′ , η′ ))

h α( ξ ) h β ( η) d ξd η = 0 , ∀ α, β = 1 , 2 , . . . , N, (26) 

here �
 represents the polynomial of the unknown common 

ariable on face 
. Similarly, this projection is equivalent to the 

ollowing one-dimensional projection, 
 o 2 

0 

(
�


(
ξ , X j 

)
− ��1 

(
ξ ′ , X j 

))
h α( ξ ) d ξ

+ 

∫ 1 

o 2 

(
�


(
ξ , X j 

)
−��2 

(
ξ ′ , X j 

))
h α( ξ ) d ξ = 0 , ∀ α = 1 , 2 , . . . , N, 

(27)

rom which �

1: N, j 

are obtained, and then also every �

i j 

by repeat- 

ng this process for j. 

. Simulation setup 

The propeller studied in this work is the DTMB 4119 model de- 

igned at the David Taylor Model Basin [40–42] . Its parameters 

re summarized in Table 1 , and the geometry is given in Table 2 ,

here r represents radial position, R = D/ 2 is propeller radius, c is 

lade section chord length, P is section pitch, φP is section pitch 

ngle, t is section thickness, and f is section camber. 

When the geometry is given, a propeller flow is governed by 

wo nondimensional parameters: advance ratio and Reynolds num- 

er. The advance ratio is defined as 

 = 

U ∞ 

nD 

, (28) 

here U ∞ 

is the incoming flow speed, n is propeller’s revolu- 

ion per second (RPS), and D is propeller diameter. The follow- 

ng Reynolds number is usually adopted in experimental studies 

f marine propellers 

e c = 

c 0 . 7 U 0 . 7 

ν
= 

c 0 . 7 
√ 

U 

2 ∞ 

+ (2 π0 . 7 Rn ) 2 

ν
, (29) 
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Fig. 3. Map curved cell face and mortars to straight ones. 

Fig. 4. Projection between face and mortar: (a) from face to the left side of a mortar, (b) from two mortars back to a face. 

Fig. 5. Two views of the DTMB 4119 propeller: left, side view; right, back view (pressure side). 
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here c 0 . 7 and U 0 . 7 = 

√ 

U 

2 ∞ 

+ (2 π0 . 7 Rn ) 2 are the chord length and 

he relative speed, respectively, at r/R = 0 . 7 , and ν is fluid kine-

atic viscosity. For numerical simulations, it is more convenient 

o define the Reynolds number as, 

e D = 

D U ∞ 

ν
. (30) 

t can be shown that these two Reynolds numbers are conveniently 

onvertible through the following relation, 

e D = 

Re c 

c 0 . 7 
D 

√ 

1 + 

(
0 . 7 π

J 

)2 
. (31) 

epending on c 0 . 7 /D and J, Re D could be either larger or smaller 

han Re c , but usually not much different. 

The geometry is visualized in Fig. 5 . As a typical screw-type 

ropeller, DTMB 4119 consists of four components: the shaft, the 

lades, the hub, and the fairwater. All components, except the 

haft, rotate at an angular speed ω. Hub and fairwater are usually 

ot part of propeller design. In this work, the hub has a length 

 h = 0 . 5 D, with the three blades installed evenly along the circum-

erential direction of the mid-hub. The fairwater in the figure is a 

 : 2 ellipsoid, but cylindrical and hemispherical fairwaters are also 

mployed in a later section to study their effects. 
5 
The overall computational domain is cylindrical as shown in 

ig. 6 . It has a length of 15 D in the streamwise (i.e., x ) direction

nd a diameter of 12 D . The resulting blockage ratio of this domain 

ith respect to the propeller is 0 . 69% , which is small enough to

uarantee negligible confinement effects according to the study in 

43] . The propeller locates 3 D downstream from the inlet, with the 

haft extends all the way to the inlet. The blades and the hub are 

nclosed in a small sliding disk region whose radius and thickness 

re 0 . 75 D and 0 . 5 D, respectively. A global view of the mesh (with a

 / 4 cutout to expose the propeller) is shown on the right of Fig. 6 ,

here the propeller and the sliding interfaces are colored in red. 

The overall mesh consists of about 235,0 0 0 quadratic curved 

exahedral elements, of which about 36,0 0 0 are within the small 

liding disk region. The mesh is refined around the propeller as 

ell as in the wake region. The first layer of the off wall elements 

n each blade surface has a height of approximately 0 . 015 D, and 

he first off wall solution point is about 0 . 0 0 07 D (for the fifth-

rder scheme) away from the walls. Two local views of the meshes 

n the sliding interfaces and the blade surfaces are shown in Fig. 7 .

e see that the high-order curved mesh captures the curvatures of 

he blade surfaces very well. 

We treat the inlet as a Dirichlet boundary, the outer cylin- 

rical surface and the outlet as characteristic farfields that al- 

ow waves and flow to leave without reflection [44] , and all solid 
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Fig. 6. Overall computational domain (left) and global view of the mesh (right). 

Fig. 7. Close views of the mesh on the sliding interfaces (left) and on the propeller surfaces (right). 
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urfaces as no-slip adiabatic walls. The incoming freestream flow 

as a low Mach number of Ma ∞ 

= 0 . 05 so that compressibility ef-

ects are small. The Reynolds number is Re D = 5 . 59 × 10 5 , which

s equivalent to Re c = 7 . 3 × 10 5 . Various advance coefficients are

tudied but with a focus on the design value (i.e., J = 0 . 833 ). The

ondimensional angular speed of the propeller is ω 

∗ = ωD/U ∞ 

= 

 πnD/U ∞ 

= 2 π/J, and the rotation period is tU ∞ 

/D = J. The simu-

ations are performed in two ways: to collect time-averaged statis- 

ics, the outer subdomain is fixed, only the inner sliding region ro- 

ates at ω, and a velocity boundary condition is applied on the fair- 

ater surface; to collect phase-averaged statistics, the whole do- 

ain rotates at angular speed ω, and velocity boundary condition 

s applied to the shaft to make it stationary. 

A four-stage third-order SSP-RK scheme [45] with a nondimen- 

ional time step size of �tU ∞ 

/D = 2 . 5 × 10 −5 is adopted for the

ime marching. The propeller therefore rotates about 0.01 degree 

er time step at the design condition. For spatial discretization, it 

s known that high-order simulation of turbulent flow may expe- 

ience instabilities due to aliasing errors [24] . We observed such 

nstabilities on the fifth- and above orders. To overcome this issue, 

e have employed the filter reported in [46] (with strength α = 

 . 05 ) to stabilize the simulations. Meanwhile, we compared the 

esign-condition results from the fourth-, the fifth-, and the sixth- 

rder schemes to ensure sufficient resolution. It was observed that 

he mean loads from the fourth- and the fifth-order schemes have 

mall differences (around 3% ), but the fifth-order scheme resolves 

he flow structures with more details. On the other hand, both 

he mean loads and the flow fields from the fifth- and the sixth- 

rder schemes are almost indistinguishable, which indicates that 

he fifth-order is the optimum choice considering both accuracy 

nd cost. For this reason, the fifth-order scheme has been used 

or the simulations in what follows. It is also worth mention- 

ng that all simulations were run for a nondimensional time of 
6 
U ∞ 

/D = 100 , and phase- and time-averaging were performed on 

he last 85 time units, which represents approximately 102 revolu- 

ions at the design condition. 

. Results and discussion 

.1. Propeller loads 

The loads on a propeller are measured by the thrust and torque 

oefficients defined as below, 

 T = 

T 

ρn 

2 D 

4 
and K Q = 

Q 

ρn 

2 D 

5 
, (32) 

here T and Q, respectively, represent the force and the torque 

xerted by the fluid on a propeller in the axial direction. The effi- 

iency of a propeller is defined as 

= 

T U ∞ 

2 πnQ 

= 

J 

2 π
· K T 

K Q 

, (33) 

here the variables have the same meanings as previously ex- 

lained. 

We first compare the loads predicted by the simulation with 

hose measured in a previous experiment [42] at various advance 

atios. As can be seen from Fig. 8 , the present numerical results 

gree very well with the experimental values under all working 

onditions: overloading condition (when J is small), near-design 

ondition, and underloading condition (when J is large). The max- 

mum difference is observed on the efficiency curve, which is 

round 5% . The present simulation predicts the highest efficiency 

round J = 0 . 9 , which is close to the design condition that is J =
 . 833 (see Table 1 ). The experiment, however, shows an optimum 

erformance slightly above J = 1 . 0 , which is further away from the

esign condition. Meanwhile, in the same figure, we also compare 
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Table 3 

Mean loads on the blades of DTMB 4119 at design condition. 

Re D (×10 5 ) Re c (×10 5 ) K T (diff.) K Q (diff.) η

Present 5.59 7.3 0.1514 0.0274 0.7326 

Design [40] – – 0.1540 ( 1 . 7% ) 0.0290 ( 5 . 5% ) 0.7040 

exp. [41] 5.59 7.3 0.1500 ( 0 . 9% ) 0.0285 ( −3 . 9% ) 0.6978 

exp. [42] 7.66 10.0 0.1460 ( 3 . 7% ) 0.0280 ( −2 . 1% ) 0.6913 

Table 4 

Loads on different parts of DTMB 4119 with an ellipsoidal fairwater at design condition. 

K T K T,p K T, v K Q K Q,p K Q, v 

blades mean 0.1514 0.1519 4.9E-4 0.0274 0.0272 2.4E-4 

r.m.s. 3.6E-4 3.6E-4 5.6E-7 7.0E-5 7.0E-5 2.6E-8 

hub mean 8.5E-5 6.7E-7 8.5E-5 3.9E-6 3.1E-8 3.9E-6 

r.m.s. 2.1E-7 4.5E-8 2.0E-7 2.2E-8 5.1E-9 2.2E-8 

fairwater mean 3.2E-3 3.2E-3 2.4E-5 8.8E-7 6.9E-10 8.8E-7 

r.m.s. 1.2E-4 1.2E-4 4.8E-7 9.9E-8 9.3E-8 3.2E-8 

Fig. 8. The mean blade loads of DTMB 4119 at different working conditions. 
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sults over 102 revolutions. 
he present results with the latest (also the best available) results 

n the same propeller from a low-order simulation [47] using the 

ommercial software STAR-CCM+. It is evident that the low-order 

olver predicts the efficiency well only in a narrow range of work- 

ng conditions where J is small. When J increases, the low-order 

rediction becomes much worse. As will be shown in the next sec- 

ion that when J increases, the flow vortices become weaker, which 

re more vulnerable to numerical dissipations. Since the high-order 

ethod introduces much smaller numerical dissipations, it predicts 

he loads very accurately under all conditions. In contrast, the large 

umerical dissipations of the low-order method have completely 

emolished the predictions when J is large. 

Since a propeller works around the design condition most of 

he time, therefore a detailed look into this condition is presented 

n what follows. The instantaneous K T and K Q of the blades at this 

ondition are plotted in Fig. 9 from tU ∞ 

/D = 15 to 45 for about

6 revolutions. The two coefficients are seen to fluctuate at small 

mplitudes about their means chaotically due to the turbulent na- 

ure of the flow. The mean values (averaged for about 102 revo- 

utions) are compared with the design [40] and the experimental 

41,42] values in Tab. 3 , where the difference is defined as (sim- 

lation/experiment −1) × 100% . The design was based on potential 

ow theories. The two experiments were performed in open wa- 

er at slightly different Reynolds numbers. The present Reynolds 

umber is chosen to exactly match that of [41] , but it is obvious

hat the Reynolds number effects are small at this level. Overall, 

e see very good agreements between the simulation and the ex- 

eriments as well as the design. 

The simulation allows us to study the loads on different parts 

f the propeller. We have summarized the results in Tab. 4 , where 
7 
mean” denotes the time-averaged values, “r.m.s” denotes the root- 

ean-square of the unsteady components, and the subscripts “p”

nd “v ” denote pressure and viscous contribution, respectively. Be- 

ore proceeding further, it is worth noting that the thrust on the 

airwater needs to be treated carefully. Unlike the blades which 

re two-sided and closed, the fairwater is “one-sided”, i.e., it has 

o direct upstream counterpart to balance the pressure force on 

ts outer surface. In real applications, this force will be partially 

ompensated by the force on an upstream surface with the same 

ross-sectional area (for example, part of the hull), resulting in a 

uch smaller net force. The flow in the upstream region is usually 

t reduced speed (or even at stagnation) with higher pressure than 

hat of the freestream. Thus, an underestimated pressure force on 

his upstream surface is p ∞ 

(πD 

2 
h 
/ 4) , where D h is the hub diame-

er. We then subtract this force from that on the fairwater to ap- 

roximate the net thrust on the fairwater. 

From Table 4 , we see that only the blades experience a thrust 

positive K T ), while the hub and the fairwater experience drags 

negative K T ). On the other hand, all three parts experience pos- 

tive torques. For the blades, pressure contribution dominates the 

oads; the r.m.s. values are at least three magnitudes smaller than 

he means, suggesting quasi-steady loads. The K T and K Q of the 

ub are four magnitudes smaller than those of the blades, which 

ndicates that the hub has negligible contribution/effect to the 

verall performance of the propeller. Furthermore, viscous contri- 

ution dominates the hub loads, which is consistent with the fact 

hat the hub has no projection in the axial direction and thus 

ressure has no way to contribute. In fact, pressure should ide- 

lly have zero contribution to the hub loads, and the present very 

mall pressure contribution implies very small geometric imperfec- 

ion of the hub, which obviously has benefited from the high-order 

urved representation of the geometry. For the fairwater, the drag 

s about 2 . 1% of the thrust on the blades, and pressure dominates; 

he torque is negligibly small, and viscosity dominates due to the 

eometric symmetry. Overall, we conclude that the thrust and the 

orque of the blades, and the drag of the fairwater are the main 

actors that affect the propeller’s performance. 

The time and frequency scales of the major loads can be iden- 

ified through the autocorrelation and the power spectral density 

PSD) curves in Fig. 10 . It is worth mentioning that the torque 

nd the thrust of a blade have almost identical characteristics, the 

urves for the torque are therefore not repeated here. The autocor- 

elation is defined as ρ(τ ) = R (τ ) /R (0) , where R (τ ) = < T (t) T (t +
) > is the autocovariance with a time lag τ, and “< > ” denotes 

nsemble average. We calculate the PSD using Welch’s method 

ith a 50% overlapping Hanning window and then average the re- 
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Fig. 9. Instantaneous loads on the blades of DTMB 4119 at design condition. 

Fig. 10. Autocorrelation and PSD of the blade thrust and fairwater drag. 
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The narrow main lobe of the autocorrelation of the blade in 

ig. 10 implies small integral time scales of the unsteadiness 

round the blade. It also agrees with the corresponding high- 

requency peak around f D/U ∞ 

≈ 7 . 9 on the PSD curve. In con- 

rast, the autocorrelation of the fairwater has a much wider main 

obe, which indicates much larger time scales of the dominant un- 

teadiness around the fairwater. The corresponding PSD curve is 

ather broadband and is dominated by very low-frequency compo- 

ents. A comparison of the two PSD curves reveals that the fairwa- 

er experiences more unsteadiness at very high-frequencies (e.g., 

f D/U ∞ 

> 20 ) than the blade does. These time and frequency scales 

re directly related to flow structures which will be discussed in 

he next section. 

.2. Flow fields 

The flow fields of a propeller have very distinct flow structures 

hat are of crucial importance to the propeller’s performance. This 

as made studying the formation, mutual interaction, and stability 

f these flow structures a constant research topic for decades. In 

his section, we report the details of the flow fields of DTMB 4119, 

ncluding the vortices, the velocity field, and the pressure field. 

.2.1. Vortices 

The vortical structures in a flow field can be well visualized 

y isosurfaces of Q-criterion [48] . The Q-criterion (denoted by Q cr ) 

s defined as the second invariant of the velocity gradient tensor, 

.e., Q cr = (
i j 
i j − S i j S i j ) / 2 , where 
i j = (u i, j − u j,i ) / 2 and S i j =
u i, j + u j,i ) / 2 are the antisymmetric and the symmetric compo- 

ent, respectively, of the velocity gradient tensor. 

When the Reynolds number is given, the only parameter that 

etermines a propeller’s flow field is the advance ratio J. Fig. 11 

hows the instantaneous vortical structures as J decreases from 1.1 

o 0.4. Note that the nondimensional rotational speed is related to 

he advance ratio as ω 

∗ = 2 π/J. Thus, a decreasing J is equivalent 

o an increasing ω 

∗. 
8 
We notice two dramatic changes in the flow field as J decreases: 

he increase of vortex strength and the occurrence of flow insta- 

ilities. At J = 1 . 1 and 1.0, the vortices are so weak that they are

uickly dissipated by the wake flow. At J = 0 . 9 and 0.8, the vor-

ices become strong enough to sustain for a long distance in the 

ake, and a hub vortex is also well established. In addition, up to 

his point the flow remains stable. Obvious instability occurs when 

decreases to 0.7, and the instability is caused by mutual inter- 

ctions between two tip vortices around x/D = 4 . 8 . At J = 0 . 6 , the

nstability is still caused by mutual tip vortex interactions, but the 

ccurrence moves upstream to x/D = 3 . 4 . The occurrence further 

oves upstream to x/D = 3 . 2 and 2.7, for J = 0 . 5 and 0.4, respec-

ively. However, the cause of the instability becomes more com- 

licated. At J = 0 . 5 , it seems the instability not only comes from

he mutual interaction between the tip vortices, but also the in- 

eraction between tip and hub vortices. Finally, at J = 0 . 4 , it looks

ike the trailing edge vortices have become strong enough to be 

he leading cause of the instability. It was conjectured in [7] that 

lade trailing edge vortices are an important source of flow in- 

tabilities. Based on our observations here, this is only possible 

hen J is small enough (i.e., propeller is at very high relative ro- 

ational speed) and when blade trailing edge vortices are strong 

nough. 

We already saw that the flow fields can be very different at dif- 

erent working conditions. In the rest of this paper, we focus on 

he design condition only. Fig. 12 shows an instantaneous view of 

he flow structures at this condition. It is seen that the tip vor- 

ices are very much equally spaced along the axial direction, with 

he distance between two successive vortices being approximately 

 . 36 D, which is about one-third the tip pitch (see Table 2 ). Mean-

hile, the surface velocity contours reveal that a tip vortex has 

ower streamwise speed on the outer surface, and higher speed 

n the inner surface. This indicates that a tip vortex not only re- 

olves helically about the propeller’s axes, but also about its own 

ore at the same time. The topology of the root vortices are not 
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Fig. 11. Isosurfaces of Q cr D 
2 /U 2 ∞ = 40 at different working conditions. 

Fig. 12. Isosurface of instantaneous Q-criterion Q cr D 
2 /U 2 ∞ = 40 at design condition. 
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ery obvious from this instantaneous flow field due to the many 

mall turbulent structures. These high-frequency small flow struc- 

ures are closer to the fairwater than to the blades, and thus have 

ontributed more to the load unsteadiness of the fairwater than to 

he blades, which agrees with our previous observation on the PSD 

urves in Fig. 10 . These small structures, however, do not dominate 

he load unsteadiness, which is likely because of their isotropy that 

eads to mutual cancellation of the effects. While the tip vortices 

reak up about 5 D downstream from the propeller, the hub vor- 

ex stays strong and does not break up even at the outlet (i.e., 12 D

ownstream from the propeller; complete picture not shown here 

ue to limited space). 

The phase-averaged isosurfaces of Q-criterion are shown in 

ig. 13 , and they reveal the major flow structures, especially the 

oot vortices, more evidently. The phase-averaged hub vortex is 

till seen to vary along the axial direction. In fact, it is the vari-

tions of these big structures that dominate the load unsteadiness 

f the fairwater. Similarly, the load unsteadiness of the blades is 

ikely dominated by the unsteadiness of the tip and the trailing 

dge vortices. 
9 
The FR method is a discontinuous-type of method, and recon- 

truction must be performed to make the solutions and fluxes 

lobally continuous. This rule also applies to the statistics, which 

re only element-wise continuous unless reconstructed. However, 

econstructing the statistics will impose extra computational and 

emory cost to the simulation. For this reason, this process is not 

erformed in this work, which results in non-smoothness across 

ell boundaries as can be seen from Fig. 13 , especially in the 

icinity of the propeller where flow changes rapidly. Neverthe- 

ess, this simplification should not alter any of the conclusions 

ere. 

The time-averaged flow field is shown in Fig. 14 . It is worth not- 

ng that time-averaging is impossible for the sliding region due to 

he movement of the propeller, and the flow in this region is thus 

ot shown in the figure. Over time, the tip vortices form a slightly 

onverging-diverging “duct” in space. The root vortices, because of 

he very small instantaneous turbulent structures, are very diffi- 

ult to converge in time. Nevertheless, they still have a tube-like 

hape over time in space. Unlike the instantaneous and the phase 

veraged ones, the time-averaged the hub vortex is very symmetric 
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Fig. 13. Isosurface of phase-averaged Q-criterion < Q cr > D 2 /U 2 ∞ = 40 at design condition. 

Fig. 14. Isosurface of time-averaged Q-criterion Q cr D 
2 /U 2 ∞ = 8 at design condition. 
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bout the axis, and almost sees no deviation from the axial direc- 

ion. This clearly demonstrates that time-averaging not only helps 

emove most of the small unsteadiness, but also the large ones, 

rom the flow field. 

The Q-criterion isosurfaces are able to reveal the most coher- 

nt vortical flow structures. They are, however, inefficient to ex- 

ose the weak ones like the trailing edge vortices at the design 

ondition. Additionally, the Q-criterion cannot reveal the sign of a 

ortex. For this reason, we have plotted the streamwise vorticity 

ontours in Figs. 15 and 16 to fill these gaps. 

We can clearly see the footprints of the trailing edge vortices 

TEVs) in Fig. 15 . One end of each TEV connects to a tip vortex, and
10 
he other end connects to the hub or root vortex. As the flow goes 

ownstream, the TEVs tilt more and more towards downstream, 

hich obviously complies with the wake velocity distribution. The 

igns of the vortices reveal that the tip vortices rotate in the oppo- 

ite direction to all other vortices as well as the propeller. 

The vorticity contours in Fig. 16 uncover how the vortices de- 

elop in the azimuthal and radial directions as the flow travels 

ownstream. The evolution of the TEVs is the most prominent: 

hey are elongated and bent in the azimuthal direction and fi- 

ally impinge onto the tip vortices. However, because of flow dis- 

ipation and the weak strength of the TEVs, these interactions do 

ot destabilize the flow. Again, the change of the TEVs is closely 



B. Zhang, C. Ding and C. Liang Computers and Fluids 224 (2021) 104967 

Fig. 15. Contours of phase-averaged streamwise vorticity in the central x - y plane. 

Fig. 16. Contours of phase-averaged streamwise vorticity in y - z planes at different streamwise locations. 

Fig. 17. Isosurfaces of phase-averaged streamwise velocity < u > /U ∞ = 0 . 9 (gray) and 1.4 (yellow).(For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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elated to the velocity distribution that will be discussed in the 

ext section. 

.2.2. Velocity field 

We already noticed that the outer and inner surfaces of a tip 

ortex have different speeds. The tip vortices thus should be well 

ounded by velocity isosurfaces. To confirm this, we plot two iso- 

urfaces of the phase-averaged streamwise velocity in Fig. 17 . It is 

een that the isosurfaces of < u > /U ∞ 

= 0 . 9 and 1.4 follow the tra-

ectories of the tip vortices very well. Meanwhile, the increasing 

ap between the two isosurfaces also agrees with the decreasing 

trength of the tip vortices as the flow moves downstream. 

A closer look of the velocity isosurfaces in the very vicinity of 

he blades also reveals the formation of the tip vortices. In Fig. 18 ,

e are looking towards downstream at the suction side in (a1) and 

a2), and towards upstream at the pressure side in (b1) and (b2). 

rom (a1), it is obvious that each leading edge (LE) decelerates the 

ncoming flow, resulting in a strand of low-speed flow along the LE 
11 
nd finally sheds off around the tip. From (a2), each trailing edge 

TE) accelerate the flow and sheds off a strand of high-speed flow 

lightly below the tip. When these two strands of flow meet and 

e convected downstream, a helical tip-vortex system is generated. 

Fig. 19 shows the phase-averaged streamwise velocity contours 

n the central x - y plane (i.e., z = 0 ). It is seen that the blade wake is

verall accelerated, while the fairwater wake is mostly at reduced 

peed. The flow immediately downstream of the fairwater has very 

ow speed, suggesting that a bubble is likely formed in this region. 

he tip vortices show up as local velocity min-max pairs along the 

uter edge of the slipstream. The footprints of other vortices, such 

s the TEVs and the hub vortex, are also visible on the velocity 

ontours. 

The Cartesian velocity can be decomposed into three compo- 

ents: streamwise, radial, and azimuthal, denoted by u, v r , and 

 θ , respectively. Fig. 20 shows the time-averaged contours of these 

omponents. We see that the overall slipstream has a converging- 

iverging shape and is well contained in the propeller’s swept area, 
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Fig. 18. Isosurfaces of < u > /U ∞ = 0 . 9 (gray) and 1.4 (yellow): (a1,a2), suction side; (b1,b2), pressure side. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 19. Contours of phase-averaged streamwise velocity in the central x - y plane. 

Fig. 20. Contours of time-averaged streamwise, radial and azimuthal velocity components in the central x - y plane. 
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.e., r ≤ 0 . 5 D (note that r = | y | in the central plane). The radial ve-

ocity is small almost everywhere, except in the very vicinity of 

he fairwater. The azimuthal speed is large only in the fairwa- 

er wake and is induced by the strong hub vortex. The two low- 

peed strips on the azimuthal speed contours around r/D = 0 . 1 

nd 0 . 4 ≤ x/D ≤ 1 . 2 are footprints of the root vortices. 

More detailed velocity profiles are shown in Fig. 21 . We see al- 

ost no induced velocity outside the slipstream (i.e., r/D > 0 . 5 ) on

ll profiles, which suggests that the propeller introduces very little 

isturbance to the flow outside its swept area. The streamwise ve- 

ocity u reaches its maximum values in the region 0 . 2 < r/D < 0 . 4 ,
12 
here the flow is accelerated by more than 30% over U ∞ 

. Out- 

ide this region, u quickly decreases to U ∞ 

around r/D = 0 . 5 , and

lso decreases to the hub-vortex-core speed at r/D = 0 . This ve- 

ocity distribution leads to the TEV deformation that is observed 

n Fig. 15 . The streamwise hub-vortex-core speed is close to zero 

n the near wake region (e.g., x/D = 0 . 46 ), and then consistently

ncreases towards downstream. At x/D = 5 . 0 , it is already slightly 

ver U ∞ 

. The radial velocity v r is only noticeable in the near wake, 

or example, at x/D = 0 . 46 and 0.5, and then quickly drops to very

mall values as the flow travels downstream. The azimuthal ve- 

ocity v θ is mostly induced by the hub vortex. It has almost the 
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Fig. 21. Time-averaged velocity profiles at different streamwise locations in the central plane. 

Fig. 22. Comparison of mean velocity profiles at x/R = 0 . 951 with experiment. 
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ame profile at different locations, except in two small regions: one 

round r/D = 0 . 1 that is affected by the root vortices, and the other

round r/D = 0 . 42 that is affected by the tip vortices. The profiles

f v θ are very close to that of a typical Rankine vortex, and is re-

ponsible for the TEV deformation in Fig. 16 . The maximum value 

f v θ is about 0 . 62 U ∞ 

in the near field, and 0 . 36 U ∞ 

in the interme-

iate wake. These are very large values, and clearly indicate how 

trong the hub vortex is. 

As a further validation of the simulation, in Fig. 22 we com- 

are the velocity profiles at x/R = 0 . 951 with a water tunnel mea-

urement from [42] . Overall, very good agreements are seen be- 

ween the simulation and the experiment. For example, in the re- 

ion 0 . 3 < r/R < 1 . 2 , the maximum difference on u is only around

% . However, we do see large discrepancies in the region that is 

lose to r/R = 0 . 2 . This is because of the setup difference between

he experiment and the simulation. In the experiment, the pro- 

eller shaft is actually at downstream, making it a stationary wall 

urface at (x/R, r/R ) = (0 . 951 , 0 . 2) . In contrast, for the simulation,

he shaft is at upstream, and it is a flow region at the same loca-

ion. 

Based on the Kutta-Joukowski theorem, for an inviscid flow the 

lift” on a unit span of a body (such as a propeller blade) is pro- 

ortional to the circulation. Following the derivation in [49,50] , the 

irculation around a blade section at r, denoted by �(r) , is related 

o the circumferential speed of the slipstream as 

(r) ≈ −2 π rv (r) /Z, (34) 
θ

13 
here Z is the number of blades of a propeller. Applying the above 

elation to the mean flow, we can define the following nondimen- 

ional circulation for a blade, 

 (r) = −1 

Z 

r 

R 

v θ (r) 

U ∞ 

≈ �(r) 

2 πRU ∞ 

. (35) 

his variable can be employed to measure the load distribution on 

 blade. Moreover, G is conservative for inviscid flows, and should 

e roughly conservative for high Reynolds number flows (where 

iscous effects are small). Fig. 23 shows the circulation profiles 

t different streamwise locations. The curves in (a) and (b) start 

round r/R = 0 . 2 because of the presence of the fairwater at these

wo locations. An experimental measurement from [42] is also 

hown in (c), which agrees well with the simulation result. Overall, 

e see that all profiles have very similar shapes and amplitudes, 

hich confirms that the circulation is indeed roughly conserved. 

evertheless, viscous effects are still evident since the local nar- 

ow peaks are gradually smoothed out as the flow travels down- 

tream. These curves also signify that the load is mostly concen- 

rated around the mid-section (i.e., r/R = 0 . 5 ) of each blade. The

arge peak around r/R = 0 . 9 in the near filed indicates that the

ropeller is also heavily loaded around the tips, which is consis- 

ent with the strong tip vortices that we have observed in the flow 

eld. 

.2.3. Pressure field 

Fig. 24 shows the phase-averaged pressure field in the central 

 - y plane. Comparing with the isosurfaces of Q-criterion in Fig. 13 , 

e see that the tip vortices show up as local pressure minima 

long the edge of the slipstream. Meanwhile, the fairwater wake, 

specially the hub vortex, is a very low pressure region, and is re- 

ponsible for the large drag on the fairwater (see Table 4 ). 

Of great importance is the pressure distribution around the 

lades, which directly affects the thrust and torque on the pro- 

eller. To see the pressure effects on the thrust more clearly, we 

ave plotted in Fig. 25 several slices in the x - y plane through the 

op blade at different spanwise (i.e., z) locations. From (a) to (h), 

e are moving from the leading edge to the trailing edge of the 

lade (refer to Fig. 5 ) along the z direction. The suction side is on 

he left, and the pressure side is on the right. As expected, we see 

hat most part of the suction side is in a low pressure region, and 

he pressure side is in a high pressure region. When we go from 

he leading edge to the trailing edge, the size of the low pressure 

egion first increases and then decreases, with the maximum size 

round the mid-span, i.e., z = 0 . In contrast, the size of the high

ressure region first decreases, and then increases. These pressure 

istributions apparently suggest that the thrust load is more con- 

entrated on the trailing portion ( z > 0 ) of the blade. 
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Fig. 23. Flow circulation at different streamwise locations. 

Fig. 24. Contours of phase-averaged pressure in the central x - y plane. 

Fig. 25. Contours of phase-averaged pressure in different x - y planes through the top blade. 
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Similarly, the contribution from different parts of a blade to the 

orque can be visualized through the pressure distribution in dif- 

erent y - z planes through the blades as shown in Fig. 26 . Again, 

rom (a) to (h) we are moving from the leading edge to the trailing

dge (refer to Fig. 5 ), but along the x direction this time. Taking the

op blade for example, the suction side is on the left, and the pres-

ure side is on the right. From this perspective, the suction side is 

lmost always in a low pressure region. In (a)-(d), a large portion 

f the pressure side actually has low surface pressure (although 

here is a large high-pressure “bubble”, but it is detached from the 

lade surface). In contrast, the pressure side has increased pres- 

ure in (e)-(h). This pressure distribution results in higher torque 

n the trailing portion of the blade. We also notice that the tips of 

he cross-sections have the largest pressure difference most of the 

ime. Considering the fact that the tips also has the largest arms in 
14 
he cross-sections, the torque is therefore also very heavily loaded 

round the edge of each blade. 

The time-averaged pressure field in the central x - y plane is 

hown in Fig. 27 , and a series of pressure profiles are given in

ig. 28 . From the contours, it is seen that on average the pro- 

eller generates an obvious high-pressure region in the near field 

/D < 1 . 0 (inside and outside of the slipstream). Other than this 

egion, the propeller’s effects on the pressure field are mostly con- 

ained within the slipstream. The hub vortex represents the pres- 

ure minima of the whole flow field. From the profiles, we no- 

ice three local pressure minima around r/D = 0 , r/D ≈ 0 . 12 (only

n the very near field), and r/D ≈ 0 . 42 . They actually correspond 

o the hub vortex, the root vortices, and the tip vortices, respec- 

ively. The pressure recovery in the blade wake ( 0 . 1 < r/D < 0 . 5 ) is

vident as the flow goes downstream. In contrast, we do not see 
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Fig. 26. Contours of phase-averaged pressure in different y - z planes through the blades. 

Fig. 27. Contours of time-averaged pressure in the central x - y plane. 

Fig. 28. Profiles of time-averaged pressure at different streamwise locations in the 

central x - y plane. 
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Fig. 29. DTMB 4119 with cylindrical fairwater (left) and hemispherical fairwater 

(right). 
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onsistent pressure recovery in the fairwater wake ( r/D < 0 . 1 ) due

o the strong hub vortex. 

.3. Fairwater effects 

The fairwater is usually not considered in propeller design. A 

ser has the freedom to choose a fairwater based on their pref- 

rence or the availability of parts. The quantitative effects of fair- 

ater shape have rarely been studied. In this section, we briefly 

tudy two more fairwater shapes: cylindrical and hemispherical, to 

ompare with the ellipsoidal one from the previous sections. For a 

air comparison, we require the three fairwaters to have the same 

urface area so that they contact with the same amount of flu- 
15 
ds. This means that the fairwaters will have different lengths. The 

:2 ellipsoidal fairwater has a length of 0 . 2 D as shown in Fig. 5 .

he geometries and sizes of the other two are shown in Fig. 29 .

s marked in the figure, the cylindrical fairwater has a length of 

 . 121 D, and the hemispherical one has a length of 0 . 171 D (a hemi-

phere of radius 0 . 1 D sitting on top of a cylinder whose height is

 . 071 D ). Overall, the shape is more elongated (streamlined) as the 

hape changes from cylindrical to hemispherical and then to ellip- 

oidal. 

The loads for the above two configurations are summarized in 

ables 5 and 6 , respectively. The overall loads on the hubs and the 

orques on the fairwaters are once again negligibly small. Com- 

aring with the ellipsoidal configuration (see Table 4 ), we notice 

hat the blades in both configurations here have smaller thrust and 

orque. However, the efficiencies of the blades (excluding fairwater 

ontributions) in all three configurations stay almost unaffected as 

hown in the first row of Table 7 , where the efficiency differences 

re around 0 . 3% . The drags on the fairwaters, on the other hand,

re dramatically different for the three configurations. The cylin- 

rical fairwater has the largest drag, followed by the hemispheri- 

al one, and then the ellipsoidal one. The overall efficiencies (with 
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Table 5 

Loads on different parts of DTMB 4119 with a cylindrical fairwater. 

K T K T,p K T, v K Q K Q,p K Q, v 

blades mean 0.1503 0.1507 4.8E-4 0.0271 0.0268 2.4E-4 

r.m.s. 1.4E-4 1.4E-4 1.1E-7 2.8E-5 2.8E-5 5.8E-9 

hub mean 9.8E-5 8.5E-7 9.7E-5 4.0E-6 2.9E-8 3.9E-6 

r.m.s. 1.1E-7 3.9E-8 9.4E-8 1.1E-8 2.2E-9 1.0E-8 

fairwater mean 4.9E-3 4.9E-3 2.9E-5 1.5E-6 1.3E-11 1.5E-6 

r.m.s. 6.0E-5 6.0E-5 1.2E-7 1.9E-8 7.9E-12 1.9E-8 

Table 6 

Loads on different parts of DTMB 4119 with a hemispherical fairwater. 

K T K T,p K T, v K Q K Q,p K Q, v 

blades mean 0.1502 0.1507 −4.8E-4 0.0271 0.0269 2.4E-4 

r.m.s. 3.2E-4 3.2E-4 5.6E-7 6.2E-5 6.2E-5 3.0E-8 

hub mean 9.1E-5 9.2E-7 9.0E-5 3.9E-6 2.9E-8 3.9E-6 

r.m.s. 1.8E-7 5.2E-8 1.6E-7 2.9E-8 3.4E-9 2.9E-8 

fairwater mean 4.4E-3 4.4E-3 3.9E-5 1.3E-6 3.5E-11 1.3E-6 

r.m.s. 1.6E-4 1.6E-4 2.8E-7 4.0E-8 5.8E-10 4.0E-8 

Fig. 30. Time-averaged pressure in the central x - y plane of DTMB 4119 with cylindrical and hemispherical fairwaters. 

Table 7 

Blade efficiency and overall efficiency for different fairwater (FW) configura- 

tions. 

cylindrical hemispherical ellipsoidal 

blades efficiency (excl. FW) 0.7353 0.7348 0.7326 

overall efficiency (incl. FW) 0.7113 0.7133 0.7171 

efficiency loss (from FW) 3.3% 2.9% 2.1% 
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airwater contributions included) are also summarized in Table 7 . 

e see that the cylindrical, the hemispherical, and the ellipsoidal 

airwaters reduce the propeller’s overall efficiency by 3 . 3% , 2 . 9% ,

nd 2 . 1% , respectively. We need to emphasize that these numbers 

re not small for a propulsion system, and we also need to repeat 

hat these numbers are underestimated based on the assumptions 

hat we made in Section 4.1 . Since pressure contribution dominates 

he drag on a fairwater, it is worth looking into the pressure fields 

o see how the fairwaters affect the pressure distributions. 

The time-averaged pressure fields for the above two configura- 

ions are shown in Fig. 30 . Comparing with the ellipsoidal configu- 

ation in Fig. 27 , we see that the three configurations overall have 

ery similar pressure distribution in the wake, which explains why 

he blade efficiencies are not affected much. The differences are 

ostly limited to the region immediately downstream of the fair- 
16 
ater. The cylindrical fairwater generates a very large low-pressure 

egion at its end. The hemispherical fairwater has a low-pressure 

egion of similar size to that of the ellipsoidal one. However, at 

he junction of the hemispherical fairwater and the hub, there is 

nother small but very low-pressure region due to the geometric 

hange, which leads to an overall larger drag for this configuration 

han the ellipsoidal one. 

. Summary 

The first high-order eddy-resolving simulation of a marine pro- 

eller has been successfully performed in this work using a re- 

ently developed sliding-mesh method. This method combines the 

ux reconstruction framework and a new dynamic curved mortar 

pproach to deal with the complex rotating geometry of a pro- 

eller without sacrificing the high-order accuracy at all. Even on 

 very coarse mesh with less than one-fourth million cells, the 

ethod predicts the propeller loads very accurately under a wide 

ange of working conditions, and also captures the flow structures 

ith a lot of details. Moreover, this method allows both phase and 

ime averaging on the same set of grid, and thus can provide more 

nformation about a flow field. 

Through visualization of vortical flow structures, it is revealed 

hat when the advance coefficient J decreases, the strengths of the 
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ajor vortices grow and flow instability gradually develops. The 

nstability first comes from tip-tip vortex interaction, then tip-tip 

s well as tip-hub vortex interactions, and finally the trailing-edge 

ortices become strong enough and start playing an important rule 

hen J is sufficiently small. At the design condition, the sources of 

ach tip vortex are identified through velocity isosurfaces to be a 

trand of decelerated flow from the leading edge and a strand of 

ccelerated flow from the trailing edge of each blade. 

A comparison between the present high-order simulation and a 

revious low-order one on the same propeller has clearly demon- 

trated the low-dissipation advantage of the high-order method, 

hich has allowed accurate prediction of the loads under all work- 

ng conditions. In contrast, the high-dissipation of the low-order 

ethod completely failed the mission for large J that generates 

eak flow vortices. Detailed load analysis at the design condition 

as revealed that the major loads are the blade thrust and torque 

s well as the fairwater drag, and pressure contribution domi- 

ates these loads. The pressure field and the circulation distribu- 

ion show that the blade loads concentrate more on the trailing 

ortion as well as the radial mid-section of each blade. 

By studying three fairwaters of different shapes, it is found that 

hese fairwaters do not have obvious effects on the blade per- 

ormance in the present setups. They, however, do dramatically 

hange the pressure distribution on their surfaces, resulting in dif- 

erent induced drags and different performance degradation to the 

verall propulsion system. More specifically, we see an efficiency 

oss of at least 3 . 3% , 2 . 9% , and 2 . 1% , from the cylindrical, the hemi-

pherical, and the ellipsoidal fairwater, respectively. It remains to 

e investigated whether there is an optimum fairwater shape that 

an minimize the efficiency loss. 
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