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ABSTRACT
A 3D parallel high-order spectral difference (SD) solver

with curved local mesh refinement is developed in this research
to simulate flow through stenoses of varied degrees (50%, 60%,
65%, 70% and 75%) of radius constriction at inlet Reynolds
number of 500. This solver employs high-order curved mesh
in the vicinity of arterial wall and the local mesh refinement
technique reduces the overall computational cost by distributing
more elements in critical regions. In simulation of flow through
stenosis of 50% radius constriction, velocity profiles predicted
from the SD solver agree well with previous DNS results and
experimental data. Mesh independency study shows that numer-
ical results from a conforming and a non-conforming mesh agree
well with each other. When the constriction degree is larger than
50%, visualizations through iso-surfaces of Q-criterion show
that vortex rings are ejected from the stenosis throat, advect-
ing downstream before they hit the vessel walls and they finally
break down and merge into a large bulk region of small-scale
turbulence. The observations are consistent with the vorticity
contour which is characterized by development of the Kelvin-
Helmholtz instability when shear layers were formed, rolled up
and advected downstream between the central jet and the recir-
culation region. When the constriction degree turns to 75%, the
flow transitions rapidly downstream of stenosis throat and dra-
matic pressure drop is witnessed. This provides a fluid-dynamic
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explanation for clinical definition of critical stenosis (i.e. over
75% luminal radius narrowing). Furthermore, the pressure drop
across a stenosis is found to be proportional to square of ra-
tio of non-stenosed area to minimum area at the stenotic throat
with a linear correlation coefficient equal to 0.9998. Finally, this
solver is proven to have excellent scalability on massively paral-
lel computers when multi-level refinement of meshes is performed
to capture small-scale structures in the turbulence region.

INTRODUCTION
Peripheral arterial occlusive disease (PAD) is prevalent

nowadays in the United States, especially among senior citizens.

Clinically, doctors define the severity of PADs by the degree of

narrowing of stenotic lesion. For example, critical stenoses are

empirically characterized by over 75% luminal radius narrow-

ing. The critical stenosis can very often cause turbulence and

reduce flow by means of viscous head losses and flow choking.

Very high shear stresses near the throat of the stenosis can acti-

vate platelets and thereby induce thrombosis, which can severely

block blood flow to the heart or brain [1]. Therefore interven-

tional measures such as balloon angioplasty, stent placement, or

arterial bypass surgery are usually conducted in patients once

narrowing degree reaches 75% [2] . However, the clinical def-

inition of the critical stenosis is still short of a scientific expla-

nation from the perspective of fluid mechanics. In order to accu-

rately and efficiently simulate arterial flow with varied degrees of

stenotic constriction, we have developed a high-order SD solver
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with local mesh refinement capability.

In this contribution, we report a detailed study on the onset

of transition in the flows through varied degrees of stenoses with

steady inlet velocity. The same stenosis geometry has been a

subject of studies of transition to turbulence under steady [3–5],

pulsatile [5, 6] and oscillatory [7] flow conditions. All afore-

mentioned studies were performed with a stenosis of 50% ra-

dius constriction (or namely 75% area reduction) and mentioned

some conditions that can trigger the onset of transition. In [3],

introduction of a geometric perturbation, in the form of a steno-

sis eccentricity that was 5% of the main vessel diameter at the

throat, resulted in breaking of the symmetry of the post-stenotic

flow field and the flow transitioned to turbulence about five di-

ameters away from the stenosis. In [5], the pulsatile flows be-

came unstable through a subcritical period-doubling bifurcation

involving alternating tilting of the vortex rings that were ejected

from the throat with each pulse. The present work focuses on

simulations of flow through varied degrees of stenoses. The goal

is to depict the coherent flow structures in post-stenotic regions

when geometries of stenoses change and verify whether the clini-

cal definition of the critical stenosis can be explained by dramatic

pressure drop induced by the breakdown of the jet and flow in-

stabilities.

Although structure of the post-stenotic flow field changes

dramatically when the degree of radius constriction increases,

the effect of geometry of the stenosis on the pressure drop can be

expressed in a linear dependency, as reported in [8]. Numerical

results in this study prove that this dependency will not change

even if the post-stenotic flow transitions and becomes unsteady.

This linear relation is useful for prediction of pressure loss across

a severe stenosis. Accurate prediction of the pressure loss is im-

portant since the reduced pressure distal to the stenosis signif-

icantly alters the blood flow to the peripheral beds supplied by

the artery [8].

MATHEMATICAL FORMULATION

Spectral Difference Method (SD)

Consider the unsteady 3D compressible Navier-Stokes equa-

tions in conservative form

∂Q
∂ t

+
∂F
∂x

+
∂G
∂y

+
∂H
∂ z

= 0, (1)

where the Q is the vector of conserved variables; F, G and H are

the total fluxes including both inviscid and viscous flux vectors

with the following expressions,

Q = [ρ ρu ρv ρw E]T , (2)

F = Finv(Q)+Fvis(Q,∇Q), (3)

G = Ginv(Q)+Gvis(Q,∇Q), (4)

H = Hinv(Q)+Hvis(Q,∇Q), (5)

where ρ is fluid density, u, v and w are x, y and z velocities,

E is the total energy per volume defined as E = p/(γ − 1) +
1
2 ρ(u2 + v2 +w2), p is pressure, γ is the ratio of specific heats.

The inviscid fluxes and viscous fluxes are

Finv =

⎛
⎜⎜⎜⎜⎜⎝

ρu
ρu2 + p

ρuv
ρuw

(E + p)u

⎞
⎟⎟⎟⎟⎟⎠
,Ginv =

⎛
⎜⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
ρvw

(E + p)v

⎞
⎟⎟⎟⎟⎟⎠
,Hinv =

⎛
⎜⎜⎜⎜⎜⎝

ρw
ρuw
ρvw

ρw2 + p
(E + p)w

⎞
⎟⎟⎟⎟⎟⎠
,

(6)

and

Fvis =−

⎛
⎜⎜⎜⎜⎜⎝

0

τxx
τyx
τzx

uτxx + vτyx +wτzx +
μCp
Pr Tx

⎞
⎟⎟⎟⎟⎟⎠
, (7)

Gvis =−

⎛
⎜⎜⎜⎜⎜⎝

0

τxy
τyy
τzy

uτxy + vτyy +wτzy +
μCp
Pr Ty

⎞
⎟⎟⎟⎟⎟⎠
, (8)

Hvis =−

⎛
⎜⎜⎜⎜⎜⎝

0

τxz
τyz
τzz

uτxz + vτyz +wτzz +
μCp
Pr Tz

⎞
⎟⎟⎟⎟⎟⎠
, (9)

where τi j is the shear stress tensor which is related to velocity

gradients as τi j = μ(ui, j +u j,i)+λδi juk,k, and μ is the dynamic

viscosity, λ = −2/3μ based on Stokes’ hypothesis, δi j is the

Kronecker delta, Cp is the heat capacity at constant pressure, Pr
is the Prandtl number, and T is the temperature.
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FIGURE 1: TRANSFORMATION FROM PHYSICAL DO-

MAIN TO COMPUTATIONAL DOMAIN

To achieve an efficient implementation, all elements in the

physical domain (x,y,z) are transformed into a computational do-

main (0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1, 0 ≤ ζ ≤ 1) as shown in Fig. 1. The

transformation can be written as:

⎛
⎜⎝

x
y
z

⎞
⎟⎠=

K

∑
i=1

Mi(ξ ,η ,ζ )

⎛
⎜⎝

xi
yi
zi

⎞
⎟⎠ , (10)

where K is the number of nodes per element, (xi,yi,zi) are the

nodal cartesian coordinates, and Mi(ξ ,η ,ζ ) is the shape function

at the i−th node. After this transformation, the conservation law

is expressed in the computational domain as

∂ Q̃
∂ t

+
∂ F̃
∂ξ

+
∂ G̃
∂η

+
∂ H̃
∂ζ

= 0, (11)

where Q̃ = |J|Q and

⎛
⎜⎝

F̃
G̃
H̃

⎞
⎟⎠= |J|J−1

⎛
⎜⎝

F
G
H

⎞
⎟⎠ . (12)

The Jacobian matrix J takes the following form

J =
∂ (x,y,z)

∂ (ξ ,η ,ζ )
=

⎡
⎢⎣

xξ xη xζ
yξ yη yζ
zξ zη zζ

⎤
⎥⎦ . (13)

In the standard computational element, two sets of points are de-

fined, namely the solution points and the flux points, as illus-

trated in Fig. 2. In order to construct a degree (N−1) polynomial

in each coordinate direction, N solution points in each direction

FIGURE 2: SCHMATIC OF THE DISTRIBUTION OF SOLU-

TION POINTS AND FLUX POINTS FOR A THIRD-ORDER

SD SCHEME ON A QUADRILATERAL ELEMENT

are required. In each dimension, the solution points are chosen

as the Chebyshev-Gauss points defined as

Xs =
1

2
[1− cos(

2s−1

2N
π)], s = 1,2, · · · ,N. (14)

The flux points are chosen as Legendre-Gauss quadrature points

plus the two end points 0 and 1. Choosing P−1(ξ ) = 0 and

P0(ξ ) = 1, the higher-degree Legendre polynomials can be de-

termined by

Pn(ξ ) =
2n−1

n
(2ξ −1)Pn−1(ξ )− n−1

n
Pn−2(ξ ). (15)

The Legendre-Gauss quadrature points are the roots of the equa-

tion Pn(ξ ) = 0.

Using the solutions at N solution points, a degree (N − 1)
polynomial can be built using the following Lagrange basis de-

fined as

hi(X) =
N

∏
s=0,s�=i

(
X −Xs

Xi −Xs
). (16)

Similarly, using the fluxes at (N+1) flux points, a degree N poly-

nomial can be built for the flux using a similar Lagrange basis

defined as:

li+1/2(X) =
N

∏
s=0,s�=i

(
X −Xs+1/2

Xi+1/2 −Xs+1/2

). (17)
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The reconstructed solution for the conserved variables in the

standard element is just the tensor products of the three one-

dimensional polynomials,

Q(ξ ,η ,ζ ) =
N

∑
k=1

N

∑
j=1

N

∑
i=1

Q̃i, j,k∣∣Ji, j,k
∣∣hi(ξ ) ·h j(η) ·hk(ζ ), (18)

Similarly, the flux polynomials are constructed as

F̃ =
N

∑
k=1

N

∑
j=1

N

∑
i=0

F̃i+1/2, j,kli+1/2(ξ ) ·h j(η) ·hk(ζ ), (19)

G̃ =
N

∑
k=1

N

∑
j=0

N

∑
i=1

G̃i, j+1/2,khi(ξ ) · l j+1/2(η) ·hk(ζ ), (20)

H̃ =
N

∑
k=0

N

∑
j=1

N

∑
i=1

H̃i, j,k+1/2hi(ξ ) ·h j(η) · lk+1/2(ζ ). (21)

The above constructed solution and fluxes are only element-wise

continuous, but discontinuous across element interfaces. For the

inviscid flux, the Rusanov solver [9] is employed to compute a

common flux at interfaces to ensure conservation and stability.

The derivatives of the inviscid fluxes are computed at the solution

points using the derivatives of Lagrange operator l:

∂ F̃
∂ξ

∣∣∣∣∣
i, j,k

=
N

∑
r=0

F̃r+1/2, j,k · l′r+1/2(ξi), (22)

∂ G̃
∂η

∣∣∣∣∣
i, j,k

=
N

∑
r=0

G̃i,r+1/2,k · l′r+1/2(η j), (23)

∂ H̃
∂ζ

∣∣∣∣∣
i, j,k

=
N

∑
r=0

H̃i, j,r+1/2 · l′r+1/2(ζk). (24)

To numerically handle viscous effect, an averaging approach is

used [10–12].

Time Integration Scheme
All computations in this paper are advanced in time using

a third-order strong-stability-preserving five-stage Runge-Kutta

scheme (SSPRK(5,3)). It is written in the form of Eqn. (25).

Q(0) = Qn,

Q(i) =
i−1

∑
k=0

[αikQk +ΔtβikR(Qk)], i = 1,2, · · · ,s,

Q(n+1) = Qs,

(25)

FIGURE 3: SCHEMATICS OF GEOMETRICALLY NON-

CONFORMING ELEMENTS WHERE THE LEFT ELEMENT

IS SUBDIVIDED INTO EIGHT CHILD ELEMENTS

where R = − ∂F
∂x − ∂G

∂y − ∂H
∂ z is the residual and s = 5 for a five-

stage Runge-Kutta scheme. The coefficients αik and βik are taken

from the table of SSPRK(5,3) in Ruuth [13]. Non-dimensional

time-step Δtui/D = 5×10−5 is used for all cases .

Curved Non-conforming Interface Approach
Local mesh refinement of a hexahedral element will make

an originally conforming mesh non-conforming. This means

that two elements might share a partial edge or face. Geomet-

rically non-conforming elements require a modification of the

usual method to couple them. A conservative approach was in-

troduced in [14] where the surface fluxes were computed on a

separate mortar space and then projected back onto the element

surfaces. This method was later extended by [15] for curved

sliding mesh application and also applied to deal with 3D ro-

tating geometries [16]. This paper uses the watertight mortar

algorithm for non-conforming interfaces in a locally refined hex-

ahedral mesh to capture the detailed flow field in the post-stenotic

region.

The present implementation will generate non-conforming

interfaces when an element is refined to 8 child elements while

their neighboring elements are not, as represented in Fig. 3.

Specifically, for 20-node isoparametric hexahedral elements, the

watertight condition [17] can be preserved during this refinement

as long as each child element employs mid-edge nodes of its par-

ent element as its own nodal points, uses quarter-edge nodes of

its parent element as its own mid-edge nodes. Maintaining wa-

tertight property for non-conforming meshes means that neigh-

boring elements may only share partial face but they represent

the same polynomial and there are no gaps in between [17].

Mortars are the intersections of child faces and the corre-

sponding parent faces. Since child faces are parts of parent faces,

mortars formed here are identical to child faces. For curved mor-

tar algorithm, parent and child faces are all mapped from phys-

ical space to square faces (i.e., 0 ≤ ξ ,η ≤ 1) in computational

space. Meanwhile, mortars are mapped to square mortar faces

(i.e., 0 ≤ ξ ′,η ′ ≤ 1) in the mortar space. This is achieved via
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(a) PHYSICAL

SPACE

(b) COMPUTATIONAL

SPACE

FIGURE 4: REPRESENTATION OF PARENT AND CHILD

FACES AND MORTARS

2D isoparametric mapping. Schematics of the parent and child

faces and mortars shown in physical and computational spaces

are Fig. 4a and 4b, where Ω represents an element face, Ξ repre-

sents a mortar, subscripts ’C’ and ’P’ represents child and parent,

superscripts are numbers of child faces and mortars. The com-

putational space and mortar space are related as

ξ = oξ + sξ ξ ′, η = oη + sη η ′, (26)

where oξ and oη are the offsets of a mortar with respect to the

corresponding element face in two coordinate directions, and s is

the scaling. For the example shown in Fig. 4, since child face and

mortar are identical, offsets of a mortar with respect to child face

are all 0 and scalings are all 1. For parent faces, for example, we

have o1
ξ = 0, s1

ξ = LΞ1

ξ ′ /LΩP
ξ = 0.5 for Ξ1, s2

ξ = LΞ2

ξ ′ /LΩP
ξ = 0.5,

o2
ξ = LΞ1

ξ ′ /LΩP
ξ = 0.5 for Ξ2, where L denotes the physical length

of the edge of the face or the mortar and the subscript indicates

the coordinate direction which the edge aligns with.

According to Eqn. (18), the solution on ΩP can be repre-

sented as,

QΩP(ξ ,η) =
N

∑
j=1

N

∑
i=1

QΩP
i, j hi(ξ )h j(η), (27)

where QΩP
i, j represents the discrete solution at the (i, j)-th so-

lution point on ΩP, hi and h j are the Lagrange bases defined

in Eqn. (16). If we define the same set of solution points on

0 ≤ ξ ′ ≤ 1, 0 ≤ η ′ ≤ 1 for each mortar, then solution on each

mortar can be reconstructed similarly,

QΞk
(ξ ′,η ′) =

N

∑
j=1

N

∑
i=1

QΞk

i, j hi(ξ ′)h j(η ′),

k = 1,2,3,4,

(28)

where QΞk

i, j is the solution at the (i, j)-th solution point on a mor-

tar Ξ.

To get the solutions on Ξk, we require that

∫ 1

0
(QΞk

(ξ ′,η ′)−QΩP(ξ ,η))hα(ξ ′)hβ (η ′) = 0,

α,β = 1,2, · · · ,N.

(29)

Substituting Eqns. (26)-(28) into the above equation and evalu-

ating it at each solution point on Ξk will give a system of linear

equations. The solution of this system when written in matrix

form is

QΞk
= PΩP→Ξk

QΩP = M−1SΩP→Ξk
QΩP , (30)

where PΩP→Ξk
= M−1SΩP→Ξk

is the projection matrix from ΩP

to Ξk. The matrices M and SΩP→Ξk
have the following expres-

sions,

M =
∫ 1

0

∫ 1

0
hα(ξ ′)hβ (η ′)hi(ξ ′)h j(η ′)dξ ′dη ′,

α,β , i, j = 1,2, · · · ,N, (31)

SΩP→Ξk
=

∫ 1

0

∫ 1

0
hα(ξ ′)hβ (η ′)hi(ok

ξ + sk
ξ ξ ′)

h j(ok
η + sk

η η ′)dξ ′dη ′, α,β , i, j = 1,2, · · · ,N, (32)

where o and s are the offset and scaling of Ξk with respect to ΩP
and the coordinate subscript indicates the direction.

Note that the projection matrix will reduce to the identity

matrix on the side of child faces. After obtaining solutions

of both sides of a mortar, the Rusanov solver is employed to

compute the common inviscid flux FΞ
inv. This common flux is

then transformed to the computational flux as F̃Ξ
inv according to

Eqn. 12. To project the common inviscid fluxes back to parent

face Ω, we require that,

4

∑
k=1

∫ η=ok
η+sk

η

η=ok
η

∫ ξ=ok
ξ+sk

ξ

ξ=ok
ξ

((FΩP
inv (ξ ,η)−FΞk

inv(ξ
′,η ′))

hα(ξ )hβ (η)dξ dη = 0, α,β = 1,2, · · · ,N,

(33)

where FΩP
inv (ξ ,η) is the inviscid flux polynomial on parent face

ΩP. Solution of the above equation when written in matrix form

is

F̃ΩP
inv =

4

∑
k=1

PΞk→ΩP F̃Ξk

inv

=
4

∑
k=1

sk
ξ sk

η M−1SΞk→ΩPFΞk

inv,

(34)
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(a) (b)

FIGURE 5: PROJECTION BETWEEN PARENT FACE AND

MORTARS: (a) FROM PARENT FACE TO MORTAR, (b)

FROM FOUR MORTARS BACK TO PARENT FACE.

FIGURE 6: SIDE VIEW OF THE STENOSIS GEOMETRY; x
IS THE STREAMWISE DIRECTION WHILE y AND z ARE

THE CROSS-STREAM DIRECTIONS.

where the matrix M is identical to that in Eqn. 31, and matrices

SΞk→ΩP (k = 1,2,3,4) are simply transposes of SΩP→Ξk
.

The computation of viscous fluxes follows the same proce-

dure. More details can be found in a previous paper [16].

PROBLEM FORMULATION
Flow through axisymmetric stenosis models with steady in-

let velocity with geometries corresponding to radius constriction

of 50%, 60%, 65%, 70% and 75% at the throat were studied.

Stenosis Geometry
The geometry of the stenosis model is depicted in Fig. 6. A

cosine function dependent on the axial coordinate, x, was used to

generate the geometry shown. Following equations specify the

shape of the stenosis

S(x) =
1

2
D[1− s0(1+ cos(2πx/L))],

y = S(x)cosθ , z = S(x)sinθ ,
(35)

where D denotes the diameter of the non-stenosed tube, s0 =
0.25, 0.3, 0.325, 0.35 and 0.375 for the 50%, 60%, 65%, 70%

and 75% radius constriction, L is the length of the stenosis, and

x = 0 is the location of the throat of the stenosis. For most cases,

L = 2D. For the axially elongated stenosis, L = 3D.

Boundary and Initial Conditions
Waves reflected back from the boundaries may reduce the

computational stability. Therefore the upstream and downstream

boundaries are placed at x = −10D and x = 25D, which are far

away from the stenosis.

The parabolic velocity profile for laminar fully developed

Poiseuille flow is imposed at the inlet

u
ui

= 2(1− (2r/D)2),
v
ui

= 0,
w
ui

= 0, (36)

where ui is the mean axial velocity at inlet and r =
√

y2 + z2

is the radial distance from the vessel centerline. The inlet den-

sity is fixed as ρ = ρi, where ρi is the initial density of the fluid

which flows into the vessel. Since four eigenvalues of the gov-

erning equations are positive while one eigenvalue is negative for

subsonic compressible flow, four conserved variables need to be

given from upstream flow while one variable from downstream.

In this study, the fluid density and flow velocities at the inlet are

fixed (to ensure a constant mass flow rate), while the inlet pres-

sure is extrapolated from the computational domain. The outlet

pressure is kept as a constant as p = po and the outlet velocity

gradient along the streamwise direction is set to 0. Meanwhile,

adiabatic no-slip boundary conditions are applied at vessel walls.

The initial density and pressure of the fluid is given as ρi
and po everywhere. The initial axial velocity profile at any axial

location is given as a parabola. The initial mean axial veloc-

ity of sections perpendicular to x−axis at non-stenosed locations

(x < −D and x > D) is given as ui which is the mean axial ve-

locity at the inlet. To ensure mass conservation, the initial mean

axial velocity at stenotic locations (−D ≤ x ≤ D) is adjusted to

guarantee conservation of mass across any sections perpendicu-

lar to x− axis.

Non-dimensional Parameters
The key non-dimensional parameter of any vessel flow is its

Reynolds number Re = ρuiD/μ . All simulations are performed

at Re = 500 based on the fact that the Reynolds number of blood

flow is 400 in the human common carotid artery [18]. As have

been discussed previously, to reduce the compressibility effects,

we have to use small Mach numbers. More specifically, in this

work, we have chosen a Mach number of 0.02 for all the cases.

Computational Meshes
The spatial discretization was based on N-th order SD

method within K hexahedral elements. The total degree of free-

dom is KN3.
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(a) CONFORMING MESH (OVERVIEW)

(b) CONFORMING MESH (SIDE VIEW)

(c) NON-CONFORMING MESH (OVERVIEW)

(d) NON-CONFORMING MESH (SIDE VIEW)

FIGURE 7: MESHES FOR STENOSIS OF 50% RADIUS CON-

STRICTION

(a) NON-CONFORMING MESH (OVERVIEW)

(b) NON-CONFORMING MESH (SIDE VIEW)

FIGURE 8: MESHES FOR STENOSIS OF 70% RADIUS CON-

STRICTION

For verification, flows through stenosis of 50% radius con-

striction are simulated. Computations are first performed on a

conforming mesh and a non-conforming mesh locally refined

at post-stenotic region. For the conforming mesh in Fig. 7a,

take any cross-section to view, 40 grid points are uniformly dis-

tributed in the circumferential direction and boundary layer mesh

has 4 layers with 1.1 growth rate towards the centerline. Mesh

along streamwise direction is doubled downstream of stenosis

throat, as shown in Fig. 7b. The number of elements is 59470.

For the non-conforming mesh, 20 grid points are placed in the

circumferential direction with equal spacings. All computational

elements located in the region where 0 ≤ x ≤ 10D are refined

into 8 child elements, as shown in Fig. 7c and 7d. The number

of elements for this mesh is 42000, which is smaller than that for

the conforming mesh.

For cases whose radius constriction is bigger than 60%, the

CFL constraint at stenosis throat is severe since the sizes of com-

putational elements there are extremely small. This limits the

global computing efficiency. Take the case of 70% radius con-

striction to illustrate the point. To solve the problem, all compu-

tational elements downstream of x = 0.58D are refined while the

upstream mesh remains coarse, as shown in Fig. 8. This tech-

nique allows us to perform all simulations at the same size of

time step.

For all simulations, a fifth order (N = 5) SD scheme is used,

which corresponds to approximately 7 million degrees of free-

dom.

VERIFICATION AND VALIDATION
Comparison with DNS and Experimental Data

The non-dimensional pressure is defined as p∗ = (p −
po)/(

1
2 ρiu2

i ). In the simulation of flow through 50% radius con-

striction, the criterion for convergence of solution is that the fluc-

tuation of non-dimensional inlet pressure p∗i = (pi− po)/(
1
2 ρiu2

i )
is less than 0.1. After tui/D = 45, the computation converges as

shown in Fig. 9. Non-dimensional z−vorticity and axial veloc-

ity contour in Fig. 11 show a laminar axisymmetric jet and shear

layer. The highest z−vorticity is located at the throat wall and

its immediate downstream region. Axial velocity profiles at four

axial locations downstream of the stenosis are compared with

DNS results from [3] and digitized experimental results from [4],

as shown in Fig. 10. Profiles predicted from SD solver agree

well with DNS profiles from [3], although both profiles from nu-

merical computation are not always consistent with experimen-

tal data. The difference lies at the downstream side where nu-

merical computation predicts a long recirculation region near the

wall while experiments predict a not completely laminar flow and

reattachment point not that far away. From Fig. 11a, the reattach-

ment point predicted from SD solver is approximately x ≈ 11D,

which is exactly the same as previous DNS prediction.

Mesh Independency Study
Another simulation of flow past stenosis of 50% radius con-

striction at Re = 500 is conducted with a non-conforming mesh

presented in Fig. 7c and 7d. No discontinuity is witnessed at

the non-conforming interfaces x = 0 and x = 10D in plots of
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FIGURE 9: NON-DIMENSIONAL INLET PRESSURE WITH

RESPECT TO NON-DIMENSIONAL TIME

FIGURE 10: COMPARISON OF AXIAL VELOCITY

PROFILES AT DOWNSTREAM LOCATIONS WITH DNS

AND EXPERIMENTAL PROFILES FOR STEADY FLOW

THROUGH THE STENOSIS OF 50% RADIUS CONSTRIC-

TION. THE AXIAL LOCATIONS ARE INDICATED IN

TERMS OF THE DISTANCE DOWNSTREAM FROM THE

STENOSIS THROAT

streamlines and variable contours, which means that the non-

conforming interface does not contaminate the computation, as

shown in Fig. 12. At all axial locations, the relative difference

between velocity profiles obtained with conforming and non-

conforming meshes is less than 0.1%.

RESULTS AND DISCUSSION
The Q-criterion [19] is used in this study for the visualiza-

tion and analysis of coherent flow structures. For the stenosis

of 50% radius constriction, figure 13a shows that the shape of the

iso-surface of Q-criterion is like a torus close to the wall of the

stenosis throat and there are no vortical structures downstream

of the throat which have similar amount of strength as those lo-

cated at the stenosis throat. With degree of radius constriction

increasing to 60% and above but below 75%, vortex rings start

to develop downstream the throat, as shown in Fig. 13b-d. These

vortex rings seem to have a equidistant arrangement. They are

advecting downstream before they feel the restriction exerted by

the vessel walls. They finally merge into a large area of turbu-

lence and break down into chaotic vortical structures. The dis-

(a) NON-DIMENSIONAL PRESSURE CONTOUR AND PLOTS OF

STREAMLINES

(b) NON-DIMENSIONAL z−VORTICITY CONTOUR

FIGURE 11: FLOW FIELD AT FINAL STEADY STATE FOR

50% RADIUS CONSTRICTION STENOSIS

tances that vortex rings can advect downstream decrease when

the stenosis constriction becomes more and more critical. For

stenosis of 60%, 65% and 70% radius constriction with L = 2D,

the vortex rings can remain intact until approximately x = 7D,

x = 5D and x = 3D. For 70% radius constriction, the advec-

tion distance of vortex rings for the stenosis of L = 2D does not

vary a lot compared with that for the axially elongated steno-

sis of L = 3D, as shown in Fig. 13d and 13e. Meanwhile, the

pressure drops in these two cases are similar. This may imply

that the flow structures of post-stenotic regions are not quite de-

pendent on the aspect ratio of the stenosis. When the degree of

radius constriction turns to 75%, the flow through stenosis be-

comes unstable immediately downstream the throat and is char-

acterized by a dramatic increase of pressure drop, as shown in

Fig. 13f. All simulation results show that the flow through steno-

sis is extremely sensitive to the degree of radius constriction of

the stenosis.

Figure 14 shows that shear layers are formed, rolled up and

advected downstream between the central jet and the recircula-

tion region. When fluid ejected from the throat with high speed

meets with slow fluid downstream close the vessel walls, the

classical Kelvin-Helmholtz instability develops. This implies

that flow unsteadiness is primarily caused by the breakdown of

Kelvin-Helmholtz-type vortices since unstable modes grow as

these vortices advect downstream. Moreover, the axial distance

that the vortices can remain stable are consistent with the dis-

tance that the vortex rings can advect downstream.

Figure 15 shows variation of pressure with axial coordinate.

The non-dimensional pressure at x = −L/2 where area of the

vessel starts to shrink is denoted as p∗1. Pressure at other axial

locations is evaluated as the difference between local pressure

and p∗1. For unsteady cases, mean pressure is shown, which is

obtained from time average of instantaneous pressure. The pres-

sure drops rapidly with increase of the degree of the stenosis,
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FIGURE 12: CONTOURS OF VARIABLES AND PLOTS OF

STREAMLINES NEAR THE MORTAR INTERFACE AT x = 0

AND x = 10D FOR STENOSIS OF 50% RADIUS CONSTRIC-

TION. (RED LINES ARE MORTAR INTERFACES)

as shown in Fig. 15. For all cases, the pressure drops to a low-

est point near approximately 2x/L = 0.08 and then recover to a

specific value p∗2. For stenoses of 70 degree radius constriction,

the lowest pressure near the throat for the stenosis of L = 2D is

a little lower than that for the stenosis of L = 3D. But there is

nearly no difference between the pressure drop for both steno-

sis models, where pressure drop across a stenosis is defined as

Δp∗ = p∗1 − p∗2. Area ratio is defined as the ratio of non-stenosed

area A1 to minimum area at the throat of the stenosis As. Fig-

ure 16 shows a strong linear correlation between the pressure

drop and square of the area ratio with a linear correlation coeffi-

cient equal to 0.9998, just as reported in [8]. This linear relation

exists even when the post-stenotic flow has turned into unsteady.

(a) STENOSIS OF 50% RADIUS CONSTRICTION

(b) STENOSIS OF 60% RADIUS CONSTRICTION

(c) STENOSIS OF 65% RADIUS CONSTRICTION

(d) STENOSIS OF 70% RADIUS CONSTRICTION

(e) AXIALLY ELONGATED STENOSIS OF 70% RADIUS CONSTRIC-

TION (L = 3D)

(f) STENOSIS OF 75% RADIUS CONSTRICTION

FIGURE 13: ISO-SURFACES OF NON-DIMENSIONAL Q-

CRITERION (COLORED BY p∗). Q-CRITERION EQUAL

TO 20 EXCEPT THAT Q-CRITERION EQUAL TO 5 FOR

STENOSIS OF 60% RADIUS CONSTRICTION
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(a) STENOSIS OF 60% RADIUS CONSTRICTION

(b) STENOSIS OF 65% RADIUS CONSTRICTION

FIGURE 14: NON-DIMENSIONAL z−VORTICITY CON-

TOUR

FIGURE 15: VARIATION OF NON-DIMENSIONAL PRES-

SURE WITH RESPECT TO AXIAL COORDINATE WITHIN

RANGE OF THE STENOSIS

Parallelization for Meshes of Multi-level Refinement
Figure 18a shows the z−vorticity computed with the mesh

presented in Fig. 8. Although the Kelvin-Helmholtz instability

is clear, the vorticity contour in the region 3.18D ≤ x ≤ 5.84D
shows that computation with the mesh cannot resolve the tur-

bulence generated there. Then a new mesh which is locally

refined not only at downstream of x = 0.58D but also at the

region 3.18D ≤ x ≤ 5.84D is generated, as shown in Fig. 17.

The z−vorticity computed with the new mesh shown in Fig. 18b

shows finer vortical structures at the region 3.18D ≤ x ≤ 5.84D.

And again no discontinuity is witnessed near mortar interfaces

even if flow is characterized by strong turbulence and mixing

FIGURE 16: VARIATION OF NON-DIMENSIONAL PRES-

SURE DROP WITH SQUARE OF THE AREA RATIO

FIGURE 17: NEW MESH OF 3 LEVELS OF REFINEMENT

(RED LINES DENOTE MORTAR INTERFACES)

layer.

For computations with meshes of multi-level refinements,

whether a solver preserves good scalability is an important stan-

dard to evaluate the performance of the solver. Here, procedures

to do parallel computing are introduced.

During preprocessing, an original coarse conforming mesh

is refined into a non-conforming mesh of multiple levels. After

refinement, we collect the mortar-to-vertex connectivity into a

single file. For each mortar, the vertices that form its correspond-

ing parent and child faces are stored in this file. Meanwhile, the

refinement generates a new non-conforming mesh file where the

elements are numbered consecutively. The Metis library [20] is

then called to partition this mesh file. After that, each proces-

sor reads in its own part of the mesh. For example, figure 19

shows the partitions of a non-conforming mesh for six proces-

sors. For simplicity, only partitions for the first 3 processors are

depicted. In order to see processor interfaces clearly, 3 partitions

of the mesh are translated a little to set them apart. Then each

processor reads in the global mortar-to-vertex connectivity. Note

that each mortar is associated with 1 parent face and 1 child face.

We call a mortar as local mortar if both faces associated with it

fall in the partition for a single processor. Other mortars whose

parent and child faces belong to different processors are called

mortars on processor interfaces. For local mortars, exchange of

information is also local and implementation of mortar algorithm

is straightforward. For mortars on the processor interfaces, only
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(a) FROM PREVIOUS MESH OF 2 LEVELS OF REFINEMENT

(b) FROM NEW MESH OF 3 LEVELS OF REFINEMENT (RED LINES

DENOTE MORTAR INTERFACES)

FIGURE 18: NON-DIMENSIONAL z−VORTICITY CON-

TOUR FOR STENOSIS OF 70% RADIUS CONSTRICTION

FIGURE 19: SCHEMATIC OF PARTITIONS OF A MESH

OF 3-LEVELS OF REFINEMENT AT THE MORTAR INTER-

FACE LOCATED AT x = 3.18D FOR 6 PROCESSORS

one side information is available locally and another side needs to

be sent from its pairing face on a remote processor. A local mor-

tar finds its pairing face by the global mortar-to-vertex connectiv-

ity. Once the pairing is done, it does not need to be updated since

current mesh refinement is static. Since one mortar on the pro-

cessor interface introduces only a very small amount of compu-

tational cost compared with cost inside each element, the overall

load balancing is not a problem. Figure 20 shows the scalability

curves for different orders of SD method with non-conforming

interfaces treatment. It is noticed that the scalability improves

as the scheme order (denoted by N) increases. This is consistent

with the fact that the computational cost on each processor is of

O(N3), whereas the communication cost is of O(N2) [21].

FIGURE 20: SPEEDUP OF THE SOLVER

CONCLUSIONS
A 3D parallel high-order SD solver with local mesh refine-

ment capability is presented in this paper for unstructured high-

order non-conforming grids. This solver uses high-order curved

mesh in the vicinity of arterial wall and thus represents the ge-

ometries much more accurate than linear meshes employed in

traditional solvers based on the finite volume method, such as

ANSYS Fluent and STAR-CCM. Meanwhile, the local mesh

refinement technique significantly reduces the overall compu-

tational cost by distributing more elements in critical regions,

such as the post-stenotic region where the flow is characterized

by large recirculation and development of shear layer instabili-

ties. Rigorous verification and validation studies are performed

by simulation of flow through a stenosis of 50% radius constric-

tion at Re = 500 and comparing the velocity profiles obtained

from the SD solver against previous DNS results and experi-

mental data. Meanwhile, the variable contours with the non-

conforming mesh shows that the watertight curved mortar algo-

rithm does not contaminate the computation. Then simulations

of stenoses of larger radius constriction are conducted. The post-

stenotic flow starts to transition and become unsteady. An array

of vortex rings is advecting downstream and remains intact until

they hit the vessel walls. The longest distance that these vortex

rings can travel downstream decreases as the radius constriction

increases until the vortex rings break down at immediate down-

stream of stenosis throat for stenosis of 75% radius constriction

and strong turbulence is produced which is characterized by dra-

matic pressure drop. This verifies that the clinical definition of

critical stenosis is reasonable from the perspective of fluid me-

chanics. Moreover, the vorticity contours show the development

of Kelvin-Helmholtz instability when shear layers were formed,
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rolled up and advected downstream between the central jet and

the recirculation region. This implies that the unsteadiness is pri-

marily caused by the breakdown of Kelvin-Helmholtz-type vor-

tices since unstable modes grow as these vortices advect down-

stream. The axial location where the Kelvin-Helmholtz-type vor-

tices start to break down is consistent with the distance that the

vortex rings can travel downstream and remain intact. This dis-

tance will not change much when the aspect ratio of the stenosis

changes, which implies that the distance is extremely sensitive

to radius constriction, but not quite relevant to aspect ratio of the

stenosis. Furthermore, the pressure drop proves to be linearly

proportional to the square of the area ratio with a linear correla-

tion coefficient equal to 0.9998. This relation remains valid even

when the post-stenotic flow turns into unsteady for stenoses of

large area reduction. Finally, the excellent scalability of the SD

solver with multi-level refinement is proven.
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