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Summary

We present a high-order solver for simulating vortex-induced vibrations (VIVs)
at very challenging situations, for example, VIVs of a row of very closely
placed objects with large relative displacements. This solver works on unstruc-
tured hybrid grids by employing the high-order tensor-product spectral dif-
ference method for quadrilateral grids and the Raviart-Thomas spectral dif-
ference method for triangular grids. To deal with the challenging situations
where a traditional conforming moving mesh is incapable, we split a computa-
tional domain into nonoverlapping subdomains, where each interior subdomain
encloses an object and moves freely with respect to its neighbors. A nonuniform
sliding-mesh method that ensures high-order accuracy is developed to deal with
sliding interfaces between subdomains. A monolithic approach is adopted to
seamlessly couple the fluid and solid vibration equations. Moreover, the solver is
parallelized to further improve its efficiency on distributed-memory computers.
Through a series of numerical tests, we demonstrate that this solver is high-order
accurate for both inviscid and viscous flows and has good parallel efficiency,
making it ideal for VIV studies.
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1 INTRODUCTION

Fluid flows can cause various types of vibrations on solid structures,1 for example, instability vibrations like flutter and
galloping on bridges and aircraft wings, resonance vibrations like buffeting and vortex-induced vibration (VIV) on tall
buildings and electric power lines, and the auto-rotation of polygon cross sections and helicopter rotors. Among the many
types, VIVs on bluff bodies have drawn a wide range of research interest due to their fundamental yet practical nature. VIV
occurs when a flow passes a bluff body accompanied by vortex shedding. The unsteady vortices exert oscillatory forces on
the body and cause vibrations. When the vortex shedding frequency approaches the natural frequency of the structure,
resonance takes place, and the amplitude of vibration increases.

An elastically mounted circular cylinder immersed in an incoming flow has been widely adopted as a model problem for
studying VIVs of bluff bodies. The experiment conducted by Feng2 in 1968 is generally considered one of the first modern
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studies on VIVs. In his experiment, a cylinder is restrained to transverse vibrations only. Khalak and Williamson3,4 experi-
mentally studied the effects of mass and damping on the vibration of a single cylinder. They found that the mass-damping
system has different response modes compared to the classical Feng-type response. Mittal and Kumar,5 Jeon and Gharib,6

Jauvtis and Williamson,7 and Prasanth et al8 studied circular cylinders with two degrees of freedom (DOFs). Their results
showed that the magnitude of parallel oscillation is orders of magnitude smaller than that of transverse oscillation.
Bernitsas et al9,10 designed a vortex-induced vibration aquatic clean energy (VIVACE) converter, which converts
ocean/river current hydrokinetic energy into usable energy such as electricity. They noticed that VIV is very sensitive
to the physical properties of the system and shows an extremely nonlinear response to flow conditions and structural
properties. More information on the recent research progress on VIVs can be found, for example, in the review papers by
Williamson and Govardhan.11,12

When it comes to the numerical simulation of VIVs, there are at least three challenges that need to be better resolved.
Firstly, to get the correct fluid force on a bluff body, the sources of the force, ie, the vortices, must be captured as accurately
as possible. Since numerical dissipation is detrimental to vortical flow structures, a numerical scheme must therefore
introduce as little dissipation as possible to a simulation. However, most of the available solvers so far for VIV simula-
tions are still limited to, at most, second-order accuracy, which introduce strong dissipations. Secondly, to accommodate
the displacement of a vibrating body, a computational mesh usually needs to be deformed; however, when the magnitude
of vibration is large, the mesh may become very skewed, resulting in excessive numerical errors. In the case of multi-
ple closely placed bodies with relatively large motions, the simulation may even fail on a traditional conforming mesh.
Thirdly, VIV is a bidirectional process between fluid and solid: the fluid causes vibration on the solid, and the solid, in
turn, modifies the flow. Therefore, accurate and efficient coupling of fluid motion and solid motion needs to be treated
very carefully. To the authors' knowledge, there has been no reported solver that thoroughly addressed all these three
challenges. The aim of this work is to fill this gap.

To deal with the first challenge, we employ the high-order spectral difference (SD) method,13-18 but with further exten-
sion to unstructured grids with mixed triangular and quadrilateral elements to improve the overall flexibility of mesh
distribution. To deal with the second challenge, we split a computational domain into nonoverlapping subdomains
that are coupled through nonconforming sliding-mesh interfaces. Zhang and Liang19 and Zhang et al20 developed a
sliding-mesh spectral difference method for simulating flows around freely rotating objects. The sliding-mesh spectral
difference method utilizes curved dynamic mortar elements to couple nonoverlapping sliding meshes. This method was
shown to be able to maintain the high-order accuracy of the SD method and is highly efficient. To apply this method to
VIV simulations, we further extended it to work with nonuniform sliding-interface meshes. To deal with the third chal-
lenge, we employ a monolithic approach and write the fluid and vibration equations into a single conservative system,
which is then time marched simultaneously. This coupling approach ensures that there is no lag for information exchange
between fluid and solid.

The rest of this paper is organized as follows. Section 2 gives the governing equations for fluid and solid. Section 3
describes the numerical methods for solving these equations. Verification studies and applications are reported in
Section 4. Finally, Section 5 concludes this paper.

2 THE GOVERNING EQUATIONS

2.1 The Navier-Stokes equations for fluid
For fluid, we consider the following two-dimensional (2D) unsteady Navier-Stokes equations in conservative form:

𝜕Q𝑓

𝜕t
+

𝜕F𝑓

𝜕x
+

𝜕G𝑓

𝜕𝑦
= 0, (1)

where Qf is the vector of conservative variables, and Ff and Gf are the flux vectors in the x and y directions, respectively.
Note that we have used the subscript “f ” to denote “fluid.” These terms have the following expressions:

Q𝑓 = [𝜌, 𝜌u, 𝜌v, E ]T, (2)

F𝑓 = Finv(Q𝑓 ) + Fvis(Q𝑓 ,∇Q𝑓 ), (3)

G𝑓 = Ginv(Q𝑓 ) + Gvis(Q𝑓 ,∇Q𝑓 ), (4)
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where 𝜌 is the fluid density; u and v are the x- and y-velocity components, respectively; E is the total energy per volume
defined as E = p∕(𝛾 − 1) + 1

2
𝜌(u2 + v2); p is pressure; and 𝛾 is the ratio of specific heat and is set to 1.4 in this work.

As expressed in Equations (3) and (4), the fluxes were divided into two parts: the inviscid and viscous fluxes. Inviscid
fluxes are only functions of the conservative variables and have the following detailed expressions:

Finv =

⎡⎢⎢⎢⎢⎣
𝜌u

𝜌u2 + p
𝜌uv

(E + p)u

⎤⎥⎥⎥⎥⎦
, Ginv =

⎡⎢⎢⎢⎣
𝜌v
𝜌uv

𝜌v2 + p
(E + p)v

⎤⎥⎥⎥⎦ . (5)

Viscous fluxes are functions of the conservative variables and the gradients. Their expressions are

Fvis = −
⎡⎢⎢⎢⎣

0
𝜏xx
𝜏𝑦 x

u𝜏xx + v𝜏𝑦 x + kTx

⎤⎥⎥⎥⎦ , Gvis = −
⎡⎢⎢⎢⎣

0
𝜏x𝑦
𝜏𝑦𝑦

u𝜏x𝑦 + v𝜏𝑦𝑦 + kT𝑦

⎤⎥⎥⎥⎦ , (6)

where 𝜏 ij = 𝜇(ui, j + uj,i) + 𝜆𝛿ijuk,k is the shear stress tensor, 𝜇 is the dynamic viscosity, 𝜆 = −(2∕3)𝜇 based on Stokes'
hypothesis, 𝛿ij is the Kronecker delta, k is the thermal conductivity, and T is temperature, which is related to density
and pressure through the ideal gas law p = 𝜌RT, where R is the gas constant. It is worth noting that, in a wide range of
thermal dynamic conditions, the nondimensional Prandtl number (defined as Pr = 𝜇cp∕k, where cp = 𝛾∕(𝛾 − 1)R is
the specific heat at constant pressure) is almost a constant for air. In this work, we have set Pr = 0.72, from which the
thermal conductivity k is obtained.

To simulate flows on dynamic grids, we take an arbitrary Lagrangian-Eulerian approach. In this approach, the physical
time and space (t, x(t), y(t)) are mapped to the computational ones (𝜏, 𝜉, 𝜂), where 𝜏 = t is time, and (𝜉, 𝜂) repre-
sents time-independent computational space. It can be shown that the Navier-Stokes equations will take the following
conservative form in the computational space:

𝜕Q̃𝑓

𝜕t
+

𝜕F̃𝑓

𝜕𝜉
+

𝜕G̃𝑓

𝜕𝜂
= 0, (7)

where

⎡⎢⎢⎢⎣
Q̃𝑓

F̃𝑓

G̃𝑓

⎤⎥⎥⎥⎦ = | | −1
⎡⎢⎢⎣

Q𝑓

F𝑓

G𝑓

⎤⎥⎥⎦ . (8)

In the above equation, | | is the determinant of the Jacobian matrix for mapping, and  −1 is the inverse Jacobian matrix,
and their expressions are

| | = |||| 𝜕(t, x, 𝑦)
𝜕(𝜏, 𝜉, 𝜂)

|||| =
|||||||

1 0 0
x𝜏 x𝜉 x𝜂
𝑦𝜏 𝑦𝜉 𝑦𝜂

||||||| = x𝜉𝑦𝜂 − x𝜂𝑦𝜉, (9)

 −1 = 𝜕(𝜏, 𝜉, 𝜂)
𝜕(t, x, 𝑦)

=
⎡⎢⎢⎣

1 0 0
𝜉t 𝜉x 𝜉𝑦

𝜂t 𝜂x 𝜂𝑦

⎤⎥⎥⎦ = 1| | ⎡⎢⎢⎣
| | 0 0

−xt𝑦𝜂 + 𝑦tx𝜂 𝑦𝜂 −x𝜂
xt𝑦𝜉 − 𝑦tx𝜉 −𝑦𝜉 x𝜉

⎤⎥⎥⎦ . (10)

It is worth mentioning that in Equation (8), we have used bold vector symbols to represent their scalar components in
order to make the expression simpler. Hereinafter, we follow this convention, and a bold symbol could be either a vector
or its scalar components, whichever makes the operation permissible.
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Ideally, grid motion should not contaminate a flow field. The simplest situation is that a constant free-stream flow stays
constant all the time, which is called free-stream preservation. To satisfy free-stream preservation, we simply substitute a
constant flow solution into Equation (7). After some algebra, we will arrive at the following equation system:

This system is only related to the geometric variables and is independent of the flow field. For this reason, it is usually
called the geometric conservation law (GCL).21 These GCL equations also need to be solved together with Equation (7)
on a dynamic grid.

2.2 The oscillator equation for solid
If we limit the motion to the vertical (ie, y) direction only, then the vibration of a solid is governed by the following driven
damped harmonic oscillator equation:

m d2𝑦

dt2 + c d𝑦
dt

+ k𝑦 = FL, (14)

where m and y are the mass and the vertical displacement of a solid, respectively, c is the damping coefficient, k is the
spring coefficient, and FL is the lift (ie, the vertical force) from the fluid. Figure 1 shows a schematic of the parameters for
a vibrating circular cylinder system.

2.3 The coupled equations
To couple the solid equation with the fluid equations (with first-order derivatives in time), we rewrite Equation (14) into
the following two first-order differential equations:

This system can be further written into a residual form, ie,
𝜕Qs

𝜕t
= s(Q𝑓 ,Qs), (17)

FIGURE 1 Diagram of a mass-spring-damper system for a circular cylinder
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where
Qs = [𝑦, .

𝑦]T, (18)

s =
[

.
𝑦,

1
m

FL − k
m
𝑦 − c

m
.
𝑦

]T

(19)

are the solution vector and the residual vector, respectively. Note that we have used the subscript “s” to denote solid.
Similarly, the fluid equation system (ie, Equation (7)) can also be written into the following residual form:

𝜕Q̃𝑓

𝜕t
= 𝑓 (Q𝑓 ,Qs), (20)

where

𝑓 = −

(
𝜕F̃𝑓

𝜕𝜉
+

𝜕G̃𝑓

𝜕𝜂

)
(21)

is the residual vector of the fluid equation.
Equations (17) and (20) can now be combined into a single monolithic conservative system as

𝜕Q
𝜕t

= (Q), (22)

where

Q =
[

Q̃𝑓

Qs

]
, (Q) =

[𝑓 (Q𝑓 ,Q s)s(Q𝑓 ,Qs)

]
(23)

are the coupled vectors of conservative variables and the residual, respectively. Equation (22) is the system that we are
going to march over time numerically.

3 NUMERICAL METHODS

3.1 The SD method for quadrilateral grids
Each quadrilateral element is first mapped from the physical space to a standard unit square element in the computa-
tional space using isoparametric mapping. To facilitate the construction of solution and flux polynomials, we then define
solution points (SPs) and flux points (FPs) within each standard element. Figure 2 shows a schematic of the distribution
of SPs and FPs for a third-order SD scheme. Generally, for an Nth-order scheme, N SPs and (N + 1) FPs are defined along
each coordinate direction. In the present implementation, the SPs are chosen as the following Gauss points:

Xs =
1
2

[
1 − cos

(2s − 1
2N

𝜋
)]

, s = 1, 2, … ,N. (24)

FIGURE 2 Schematic of the distribution of solution points (blue circles) and flux points (orange squares) for a third-order spectral
difference scheme on a quadrilateral element



176 QIU ET AL.

The FPs (denoted by Xs + 1/2, where s = 0, 1, … ,N) are chosen as the (N − 1) Legendre points (ie, roots of the (N − 1)th
Legendre polynomial) plus two end points, where the nth Legendre polynomial is defined as

Pn(𝜉) =
2n − 1

n
(2𝜉 − 1)Pn−1(𝜉) −

n − 1
n

Pn−2(𝜉), with P−1 = 0, P0 = 1. (25)

Next, the following Lagrange interpolation bases are readily constructed at each SP and FP, respectively, ie,

hi(X ) =
N∏

s=1,s≠i

(
X − Xs

Xi − Xs

)
, (26)

li+1∕2(X ) =
N∏

s=0,s≠i

( X − Xs+1∕2

Xi+1∕2 − Xs+1∕2

)
. (27)

The solution and flux polynomials are constructed using tensor products of the above bases, ie,

Q̃𝑓 (𝜉, 𝜂) =
N∑
𝑗=1

N∑
i=1

(Q̃𝑓 )i,𝑗hi(𝜉)h𝑗(𝜂), (28)

F̃𝑓 (𝜉, 𝜂) =
N∑
𝑗=1

N∑
i=0

(F̃𝑓 )i+1∕2,𝑗 li+1∕2(𝜉)h𝑗(𝜂), (29)

G̃𝑓 (𝜉, 𝜂) =
N∑
𝑗=0

N∑
i=1

(G̃𝑓 )i,𝑗+1∕2hi(𝜉)l𝑗+1∕2(𝜂), (30)

where (Q̃𝑓 )i,𝑗 is the discrete solution at the (i, j)th SP, and (F̃𝑓 )i+1∕2,𝑗 and (G̃𝑓 )i,𝑗+1∕2 are the discrete fluxes at the
corresponding FPs.

The above constructed solution and flux polynomials are only element-wise continuous, but discontinuous across cell
boundaries. To ensure conservation and stability, a Riemann solver is employed to compute the common inviscid fluxes
at cell boundaries. In this work, the Rusanov solver22 has been employed for this purpose. The common viscous fluxes
are computed from the common solutions and common gradients that are algebraic averages of the left and right values.
Finally, the residual is computed by a direct differentiation of the continuous flux polynomials.

3.2 The SDRT method for triangular grids
Similar to the SD method on quadrilateral grids, we map each triangular grid element to a standard unit equilateral
triangular element using isoparametric mapping. Since flux interpolation in the Raviart-Thomas (RT) space stabilizes the
SD method on triangular grids,18 this method is called the SDRT method. Figure 3 shows a schematic of the distributions
of SPs and FPs for the third-order SDRT schemes. Generally, for an Nth-order SDRT scheme, the number of SPs is

NSP = N(N + 1)
2

. (31)

FIGURE 3 Distribution of solution points (blue circles) and flux points (orange squares) for a third-order SDRT scheme
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The vector of computational fluid variables in the SDRT method is represented by the following polynomial:

Q̃𝑓 (𝜉, 𝜂) =
NSP∑
i=1

(Q̃𝑓 )iLi(𝜉, 𝜂), (32)

where (Q̃𝑓 )i is the discrete solution at the ith SP, and Li(𝜉, 𝜂) is a 2D Lagrange interpolation basis function at the ith SP
with the following expression:

Li(𝜉, 𝜂) =
N−1∑
𝛼=0

𝛼∑
𝛽=0

a(i)
𝛼,𝛽

𝜉𝛽𝜂𝛼−𝛽 , (33)

where the coefficients a(i)
𝛼,𝛽

's are obtained by solving a system of equations following the definition

Li(𝜉𝑗 , 𝜂𝑗) = 𝛿i𝑗 , for 𝑗 = 1, 2, … ,NSP, (34)

where (𝜉j, 𝜂j) are coordinates of the jth SP. This interpolation basis is of degree (N − 1) in both 𝜉 and 𝜂.
For the flux polynomials, the SDRT method employs vector interpolation bases in the RT space. The constructed flux

polynomials can be expressed as [
F̃𝑓 (𝜉, 𝜂)
G̃𝑓 (𝜉, 𝜂)

]
=

NDOF∑
i=1

(F̂𝑓 )iΨ⃗i(𝜉, 𝜂), (35)

where NDOF is the total number of DOFs at the FPs. For an Nth-order SDRT scheme, this number is

NDOF = N(N + 2). (36)

The DOFs are denoted by gray arrows in Figure 3: an FP on the boundaries has one DOF, and an FP in the interior has
two DOFs. The scalar flux (ie, (F̂𝑓 )i) in Equation (35) at the ith DOF is defined as

(F̂𝑓 )i =
(
(F̃𝑓 )i, (G̃𝑓 )i

)
· s⃗i, (37)

with (F̃𝑓 )i and (G̃𝑓 )i being the computational fluxes in the 𝜉 and 𝜂 directions, respectively. Finally, Ψ⃗i(𝜉, 𝜂) is a degree N
interpolation polynomial vector in the RT space with the following expression:

Ψ⃗i(𝜉, 𝜂) =
⎡⎢⎢⎣
(∑N−1

𝛼=0
∑𝛼

𝛽=0b(i)
𝛼,𝛽

𝜉𝛽𝜂𝛼−𝛽
)
+ 𝜉

(∑N−1
k=0 d(i)

k 𝜉k𝜂N−k−1
)

(∑N−1
𝛼=0

∑𝛼
𝛽=0c(i)

𝛼,𝛽
𝜉𝛽𝜂𝛼−𝛽

)
+ 𝜂

(∑N−1
k=0 d(i)

k 𝜉k𝜂N−k−1
) ⎤⎥⎥⎦ . (38)

There are a total number of NDOF unknown coefficients (ie, the b's, c's, and d's) in the above expression, and they are
obtained by solving the following equation system:

Ψ⃗i(𝜉𝑗 , 𝜂𝑗) · s⃗𝑗 = 𝛿i𝑗 , for 𝑗 = 1, 2, … ,NDOF, (39)

where (𝜉j, 𝜂j) are the coordinates of the jth DOF. In this work, the s⃗ vectors are chosen as the unit normals on cell bound-
aries and either (1, 0) or (0, 1) in the cell interior, as shown in Figure 3. The flux polynomials in this way are of degree N in
both 𝜉 and 𝜂. The common solution and common fluxes on cell boundaries are computed in a similar way as for quadratic
cells. Again, the final residual is computed by a direct differentiation of the continuous flux polynomials.

3.3 Mesh movement control
We take the domain in Figure 4 to explain how mesh movement is controlled. The overall domain in this example is split
into three subdomains by two sliding interfaces. The two side subdomains are static, whereas the middle one is dynamic to
accommodate the motion of the cylinder. The middle subdomain is further divided into three virtual regions: in region I,
the mesh is rigid and moves together with the cylinder; in region II, the mesh is deformed; and in region III, the mesh
stays stationary.

Assume the initial position of a grid point is (x0, y0) and the cylinder center is at (xc, yc). We first define an intermediate
variable on the initial mesh as

r = (|𝑦0 − 𝑦c| − d1)∕(d2 − d1), (40)
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FIGURE 4 Schematic of a computational domain with two sliding interfaces for a vibrating cylinder

where d1 and d2 are the two vertical distances (measured from the cylinder center) used to define the virtual regions. The
following blending function23 is then defined to control the mesh motion:

b(r) =
⎧⎪⎨⎪⎩

1, if r ≤ 0 (ie, in region I)
1 − 10r3 + 15r4 − 6r5, if 0 < r < 1 (ie, in region II)
0, if r ≥ 1 (ie, in region III).

(41)

When the cylinder has a vertical displacement of Δyc (measured from its initial position), the coordinates of a grid point
in the middle subdomain are updated to

x = x0, (42)

𝑦 = 𝑦0 + b(r) · Δ𝑦c. (43)

The grid velocities are updated in a similar way using the same blending function.
We illustrate the advantages of this sliding-mesh approach in Figure 5 for two vibrating cylinders. Figure 5A shows the

initial mesh, where the two cylinders are separated by a distance of two times the diameter. Figure 5B shows the conform-
ing mesh when the two cylinders have moved one diameter apart in the vertical direction. It is obvious that the mesh has
become very skewed above the leading cylinder, below the trailing cylinder, and in-between the two cylinders. Figure 5C
shows the sliding mesh, and it is evident that the mesh quality is much improved by introducing sliding interfaces.

FIGURE 5 Schematic of meshes for two vibrating cylinders. A, Initial mesh; B, Conforming deforming mesh; C, Sliding mesh (blue lines
are sliding interfaces)
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FIGURE 6 Schematic of the distribution of mortar elements (hatched) between two sliding meshes [Colour figure can be viewed at
wileyonlinelibrary.com]

3.4 A nonuniform sliding-mesh method
Meshes on the two sides of a sliding interface are nonconforming and nonuniform in this work, and this creates geometric
incompatibility. To overcome this issue, we extend a previous uniform sliding-mesh method19,20 to the general nonuniform
case. This method employs dynamic mortar elements14,24 to exchange information between the two sides of an interface.

Figure 6 shows a schematic of the distribution of mortar elements between two sliding meshes. As we can see, a mortar
is formed between two successive mesh points along the sliding interface, and these two points could come from either
one side or two sides of an interface. A mortar element is always connected to two cell faces: one on its left and one on its
right. In contrast, a cell face may have one or multiple mortar elements, and this number may change with time. These
mortar and face connectivities need to be updated at every sub–time step of a time-marching scheme.

To make connectivity updating more efficient, we reorder cell faces on each side of a sliding interface to a bottom-to-top
order and put the reordered ones into a list (faces on the left side are stored first, and then those from the right). This
reordering is done during preprocessing and only needs to be done once. We denote the left side of an interface as “l”
and the right side as “r.” For a sliding interface, assume we have nfl faces on the left and nfr on the right, then the total
number of faces is nf = nfl + nfr. It is evident that the total number of mortars is nm = nf − 1, and this number does
not change with time. Knowing this number allows us to allocate memories during preprocessing. Next, we define four
arrays to store the connectivities: vof(1:nf, 1:2), mof(1:nf, 1:2), fom(1:nm, 1:2), and vom(1:nm, 1:2). To be more specific,
vof(i, 1:2) stores the two vertices of the ith face; mof(i, 1) and mof(i, 2) store the first mortar and the total number of
mortars, respectively, of the ith face; fom(i, 1) and fom(i, 2) are the left and right faces, respectively, of the ith mortar; and
vom(i, 1:2) stores the two vertices of the ith mortar. Algorithm 1 lists the detailed steps for updating these connectivities.

We already know that a cell face is mapped to a unit line segment, for example, 0 ≤ 𝜉 ≤ 1, when the cell is mapped to
a standard computational element. Similarly, we also map each mortar element to a unit line segment 0 ≤ z ≤ 1, which
we call the mortar space. The mortar space and the computational space are then related as

𝜉 = o(t) + s(t)z, (44)

where o(t) is the offset of the mortar with respect to the start point of the cell face, and s(t) is the relative scaling. If we use
Ω to denote a cell face and Ξ to denote a mortar, then, as shown in Figure 7B, we have o1 = 0 and s1 = LΞ1∕LΩ for Ξ1,
oi = (LΞ1 + · · · + LΞi−1)∕LΩ and si = LΞi∕LΩ for Ξi, where L denotes the physical length of a cell face or a mortar.

According to the 2D solution polynomial, the solution on a cell face Ω is represented by the following one-dimensional
polynomial:

QΩ
𝑓 =

N∑
i=1

(
QΩ

𝑓

)
i
hi(𝜉). (45)

If we define the same set of SPs on a mortar Ξ, then the solution polynomial on Ξ has a similar form, ie,

QΞ
𝑓 =

N∑
i=1

(
QΞ

𝑓

)
i
hi(z), (46)

where (QΞ
𝑓
)i is the discrete solution at the ith SP on mortar Ξ.
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FIGURE 7 Projection between a cell face and mortars. A, From a cell face to the left side of a mortar; B, From n mortars back to the left
cell face
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To get the discrete solutions on a mortar, for example, those on the left side of mortar Ξ in Figure 7A, we require
1

∫
0

(
QΞ,L

𝑓
(z) − QΩ

𝑓
(𝜉)

)
h𝑗(z)dz = 0, ∀𝑗 = 1, 2, … ,N. (47)

The solutions of this equation system when written in matrix form are(
QΞ,L

𝑓

)
1∶N

= M−1SΩ→Ξ
(

QΩ
𝑓

)
1∶N

, (48)

where the matrices M and SΩ→Ξ have the following elements:

Mi,𝑗 =

1

∫
0

hi(z)h𝑗(z)dz, SΩ→Ξ
i,𝑗 =

1

∫
0

hi(o + sz)h𝑗(z)dz, i, 𝑗 = 1, 2, … ,N, (49)

where o and s are the offset and the scaling, respectively, of mortar Ξ, with respect to face Ω.
Similarly, we can get solutions on the right side of a mortar, ie, (QΞ,R

𝑓
)1∶N . The common solution is then computed as(

QΞ
𝑓

)
1∶N

= 1
2

((
QΞ,L

𝑓

)
1∶N

+
(

QΞ,R
𝑓

)
1∶N

)
. (50)

The common inviscid fluxes at the SPs of the mortar, denoted by (F̃Ξ
inv)1∶N , are computed using a Riemann solver, for

example, the Rusanov solver.22

The flux polynomials on a cell face and a mortar element have the same forms as those for the solution polynomials in
Equations (45) and (46). As shown in Figure 7B, to project the common inviscid fluxes from n mortars back to a cell face
Ω, we require

n∑
i=1

oi+si

∫
oi

(
F̃Ω

inv(𝜉) − F̃Ξi
inv(z)

)
h𝑗(𝜉)d𝜉 = 0, ∀𝑗 = 1, 2, … ,N, (51)

where F̃Ω
inv(𝜉) and F̃Ξi

inv(z) are the inviscid flux polynomials on face Ω and mortar Ξi, respectively. The solutions of the
above equation system when written in matrix form are(

F̃Ω
inv

)
1∶N

=
n∑

i=1
siM−1SΞi→Ω

(
F̃Ξi

inv

)
1∶N

, (52)

where matrix M is identical to that in Equation (49), and SΞi→Ω is simply the transpose of SΩ→Ξi .
For viscous flow, the common solutions (QΞ

𝑓
)1∶N are projected back to cell faces to compute local viscous fluxes (F̃Ω

vis)1∶N ,
which are then projected to mortars following Equation (47). The common viscous fluxes, ie, (F̃Ξ

vis)1∶N , are computed as
the average of the left and right values and are finally projected back to cell faces following Equation (51).

3.5 Temporal scheme and GCL discretization
The coupled–fluid-and-solid system (ie, Equation (22)) is a first-order partial differential equation system in time. We
march this system in time using an explicit five-stage fourth-order strong stability–preserving Runge-Kutta scheme.25

To numerically satisfy the GCL equations (ie, Equations (11)-(13)), we apply the same spatial and temporal schemes
as for the governing equations to them. Because our spatial discretization scheme is actually a direct differentiation and
mesh movement is controlled by blending polynomials, the first two GCL equations are therefore satisfied automatically.
For the last GCL equation, we treat | | as an unknown and solve for it. This numerical | | is then used to update the
physical flow solutions. In this way, all GCL equations are numerically satisfied.

3.6 Parallelization
Each subdomain mesh is generated separately. During preprocessing, we combine these meshes into a single file and
number the elements consecutively. The Metis library26 is then called to partition this single mesh file. After that, each
processor reads in its own part of the mesh. For example, Figure 8 shows the partitions of a simple mesh for six processors.
We notice that the grid partition for processor P0 (also for P5) is discontinuous; this is because of the discontinuous sliding
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FIGURE 8 Schematic of partitions of a simple mesh for six processors (blue lines represent processor interfaces)

FIGURE 9 Schematic of the distribution of mortars between two subdomains for the parallel solver (hatched lines are local mortars; thick
gray lines are global mortars)

interfaces. However, since the sliding mesh introduces only a very small amount of computational cost,19 the overall load
balancing is not a problem, especially for real simulations where the computational cost on the sliding-mesh interface is
negligible.

After mesh partitioning, each processor only contains local information that is incomplete about the overall mesh.
To exchange information between sliding interfaces, we introduce the concept of local mortar and global mortar. For
example, in Figure 9, a local mortar (hatched) on processor P1 is only connected to a cell face on its left, and only the
left information is locally available, whereas the right information needs to be sent from its pairing mortar on processor
P3 or P4. Similarly, a mortar on processor P3 is only connected to a cell face on its right, and only the right information
is locally available, whereas the left information needs to be sent from its pairing mortar on processor P0 or P1. A local
mortar finds its pairing mortar through a local-mortar-to-global-mortar connectivity: two local mortars that share the
same global mortar form a pair. Global mortars (denoted by thick gray lines) are equivalent to the mortars in a serial solver
(see Figure 6) and are generated in the same way as in a serial solver. The exchange of information is done by using the
message passing interface library.

4 NUMERICAL TESTS

In this section, we first verify the spatial accuracies of the solver on an inviscid flow and a viscous flow. Following that, we
simulate VIVs of a single cylinder and compare the results with previously published ones. Finally, we apply the solver to
simulate VIVs of two tandem cylinders and test its parallel efficiency by simulating VIVs of a row of three cylinders.



QIU ET AL. 183

4.1 Euler vortex flow
In a Euler vortex flow,27 an isentropic vortex is superimposed to and convected by a uniform mean flow. The analytical
solution for the Euler vortex flow in an infinite domain is

u = U∞

{
cos 𝜃 − 𝜖𝑦r

rc
exp

(
1 − x2

r − 𝑦2
r

2r2
c

)}
, (53)

v = U∞

{
sin 𝜃 + 𝜖xr

rc
exp

(
1 − x2

r − 𝑦2
r

2r2
c

)}
, (54)

𝜌 = 𝜌∞

{
1 − (𝛾 − 1)(𝜖M∞)2

2
exp

(
1 − x2

r − 𝑦2
r

r2
c

)} 1
𝛾−1

, (55)

p = p∞

{
1 − (𝛾 − 1)(𝜖M∞)2

2
exp

(
1 − x2

r − 𝑦2
r

r2
c

)} 𝛾

𝛾−1

, (56)

where U∞, 𝜌∞, p∞, and M∞ are the mean flow speed, density, pressure, and Mach number, respectively; 𝜃 is the direc-
tion of the mean flow; 𝜖 and rc denote the vortex strength and size, respectively; and the relative coordinates (xr, yr) are
defined as

xr = x − x0 − ūt, (57)

𝑦r = 𝑦 − 𝑦0 − v̄t, (58)

where (ū, v̄) = (U∞ cos 𝜃,U∞ sin 𝜃) are the mean velocity components, and (x0, y0) represent the initial position of the
vortex.

In the present simulation setup, the mean flow is (U∞, 𝜌∞) = (1, 1), with a Mach number M∞ = 0.3 and a direction
𝜃 = 𝜋∕6. The size of the computational domain is 0 ≤ x, y ≤ 10. A vortex with 𝜖 = 1, rc = 1 is initially placed at
the center of the domain, ie, at (x0, y0) = (5, 5). The computational domain is divided into three subdomains by x = 3
and x = 7. The two side subdomains are meshes into triangular cells, whereas the middle subdomain is meshed into
quadrilateral cells. Four meshes with 44/15, 156/50, 568/200, and 2216/800 hybrid triangular/quadrilateral cells are
employed for accuracy tests. Figure 10 shows a mesh with 156/50 triangular/quadrilateral cells. The horizontal centerline
of the middle subdomain (ie, yc = 5, 3 ≤ x ≤ 7) has a motion Δ𝑦c = sin(0.5t), and the deforming region is |y0 − 5| ≤ 4.
The two side subdomains are kept stationary.

In Figure 11, we compare the density contours from the exact solution and the fourth-order scheme on the mesh from
Figure 10. The time is t = 2.3 when the center of the vortex travels onto one of the sliding interfaces. As we can see, the
solver resolves the vortex very well, and the nonconforming and nonuniform sliding interfaces do not contaminate the
flow at all.

FIGURE 10 Mesh with 156/50 triangular/quadrilateral cells for Euler vortex flow simulation (blue lines are sliding interfaces)
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FIGURE 11 Density contours for the Euler vortex flow. (Left) Exact solution; (Right) Numerical solution (blue lines are sliding interfaces)

TABLE 1 Errors and orders of accuracy (based on density) for the
Euler vortex flow simulation

Scheme Cells L1 Error Order L2 Error Order
Third-order 44/15 1.58E−03 – 2.97E−03 –

156/50 3.08E−04 2.62 5.69E−04 2.65
568/200 4.32E−05 2.97 9.17E−05 2.76

2216/800 6.58E−06 2.75 1.47E−05 2.67
Fourth-order 44/15 6.95E−04 – 1.37E−03 –

156/50 5.76E−05 4.00 1.14E−04 4.00
568/200 3.44E−06 4.25 7.43E−06 4.12

2216/800 2.00E−07 4.15 4.34E−07 4.14

Furthermore, we compute the orders of accuracy from the L1 and L2 errors of density for this flow. The errors are
defined as

L1 error =

∑DOF
i=1

|||𝜌i − 𝜌exact
i

|||
DOF

, L2 error =

√∑DOF
i=1

(
𝜌i − 𝜌exact

i

)2

DOF
, (59)

where 𝜌i and 𝜌exact
i are the numerical and exact solutions, respectively, at the ith DOF, and DOF is the total number of

DOFs. For an Nth-order scheme on a mesh with Nquad quadrilateral cells and Ntri triangular cells, we have

DOF = Nquad · N2 + Ntri ·
N(N + 1)

2
. (60)

The computed errors and accuracies are shown in Table 1 for the third- and fourth-order schemes on four meshes at
t = 2.3. It is obvious that despite of the presence of nonconforming sliding interfaces, the sliding-mesh method retains
the high-order accuracy of the SD and SDRT methods on this inviscid flow.

4.2 Planar Couette flow
For the viscous planar Couette flow between two infinite plates that are separated by a distance of H, if the top plate moves
at speed U and has a temperature Tt and the bottom plate is stationary with a temperature Tb, then the steady-state flow
field is

u = 𝑦

H
U, v = 0, (61)

e = eb +
𝑦

H
(et − eb) +

PrU2

2𝛾

(
𝑦

H
−
( 𝑦

H

)2
)
, (62)

p = constant, (63)
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FIGURE 12 Mesh with 16/16 triangular/quadrilateral cells for planar Couette flow simulation (blue lines are sliding interfaces)

FIGURE 13 Mach number contours of the planar Couette flow using the fourth-order scheme (blue lines are sliding interfaces)

where e = CVT is the internal energy; CV = R∕(𝛾 − 1) is the specific heat at constant volume; the subscripts “b” and “t”
denote the bottom and top plates, respectively; and Pr is the Prandtl number, which is set to 0.72 in this work.

In the present simulation, we have set H = 1, U = 1.0, and Tb = Tt = 1.0. The Mach number on the top plate is Ma =
0.1. The Reynolds number based on H, U, and the fluid viscosity (which is assumed constant) is Re = 100. The overall
computational domain is bounded by 0 ≤ x ≤ 2 and 0 ≤ y ≤ H. It is further divided into three subdomains by x = 0.6
and x = 1.4. The middle subdomain again has a motion Δ𝑦c = 0.1 sin(0.5t) about its centerline, and meshes within
0.1 ≤ y0 ≤ 0.9 are deformed. The other two subdomains are fixed. The top and bottom boundaries are treated as no-slip
isothermal walls. The left and right boundaries are set as periodic boundaries. Three meshes with 4/4, 16/16, and 64/64
hybrid triangular/quadrilateral cells are used for the tests. Figure 12 shows the mesh with 16/16 triangular/quadrilateral
cells.

Figure 13 shows the steady-state Mach number contours from the fourth-order scheme on the mesh with 16/16
triangular/quadrilateral cells. It is evident that the grid motion and the nonconforming sliding interfaces do not intro-
duce any visible disturbances to the flow field. The Mach contours align very well along the y-direction, and they are seen
invariant along the x-direction, which is consistent with the analytical solutions.

The errors and orders of accuracy for this flow are computed in the same way as for the Euler vortex flow. Table 2 shows
the results for the u velocity. It is observed that for this viscous flow, the sliding-mesh method and the hybrid SD method
have also achieved the optimum orders of accuracy.

TABLE 2 Errors and orders of accuracy (based on the u velocity)
for the planar Couette flow simulation

Scheme Cells L1 Error Order L2 Error Order

Third-order 4/4 2.03E−05 – 2.36E−05 –
16/16 2.54E−06 3.00 2.89E−06 3.03
64/64 3.05E−07 3.06 3.47E−07 3.06

Fourth-order 4/4 2.46E−07 – 3.91E−07 –
16/16 1.77E−08 3.79 2.71E−08 3.85
64/64 1.18E−09 3.90 1.66E−09 4.03
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4.3 VIVs of an isolated cylinder
The motion of an elastically mounted cylinder placed in a uniform free-stream flow is affected by several nondimensional
variables: the mass ratio (m∗), the speed ratio (U∗), the damping ratio (𝜁), the lift coefficient (CL), and the Reynolds number
(Re), and these parameters are defined as

m∗ = m

𝜌∞𝜋
(

1
2

d
)2

l
, (64)

U∗ = u∞

𝑓N d
, (65)

𝜁 = c

2
√

km
, (66)

CL = FL
1
2
𝜌∞u2

∞ld
, (67)

Re = 𝜌∞u∞d
𝜇∞

, (68)

where the physical meanings of m, k, c, and FL have already been explained in Equation (14); 𝜌∞, u∞, and 𝜇∞ are the
free-stream density, velocity, and viscosity, respectively; d is the diameter of the cylinder; l is the spanwise length of
the cylinder, which is treated as 1 for 2D simulations; and fN is the natural frequency for undamped vibration, whose
expression is

𝑓N = 1
2𝜋

√
k
m
. (69)

Following the simulation in the work of Prasanth et al,8 in this test, we set m∗ = 10, 𝜁 = 0, and U∗ = 0.06Re, where Re
takes several different values. The free-stream flow has a Mach number of 0.1. The overall domain has a size of 60d × 100d
or 60d × 20d, resulting in a blockage ratio of 1% or 5%. The middle subdomain has a width of 6d and is bounded by
two sliding interfaces. The boundary conditions are set as follows: Dirichlet for the inlet, pressure outflow for the outlet,
symmetric for the top and the bottom, and no-slip adiabatic wall for the cylinder.

Figure 14 shows a global view and a local view of the computational mesh with a blockage ratio of 5%, where the mesh
has a total number of 6696 cells, with 1494 in the middle subdomain and 5202 in the two static subdomains altogether.
The mesh with a blockage ratio of 1% has a total number of 8818 cells, with 1854 in the middle subdomain and 6964 in the
two static subdomains altogether. The mesh around the cylinder and that in the wake region are refined. A quadrilateral
boundary-layer mesh has been applied on the cylinder surface, where the minimum mesh spacing normal to the surface
is 0.01d. The mesh is designed such that the solutions are mesh independent for both the third- and fourth-order schemes.
A computational time step size of Δtu∞∕d = 1.0 × 10−3 is used for all simulations.

The maximum vibration amplitude ( ymax∕d) and the maximum lift coefficients ((CL)max), both from the fourth-order
scheme, are plotted in Figures 15 and 16 against the Reynolds number. From both figures, it is seen that both the vibration
amplitude and the lift coefficient first increase and then decrease with the Reynolds number. The maximum values of
ymax∕d and (CL)max are achieved when the vortex shedding frequency approaches the natural frequency (Equation (69)),

FIGURE 14 Global and local views of the mesh with a blockage ratio of 5% for simulating vortex-induced vibrations of a single cylinder
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 The maximum normalized vibration amplitude for vortex-induced vibrations of a single cylinder [Colour figure can be viewed
at wileyonlinelibrary.com]
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FIGURE 16 The maximum lift coefficient for vortex-induced vibrations of a single cylinder [Colour figure can be viewed at
wileyonlinelibrary.com]

which are reflected as a big jump on each curve. It is seen that the present results agree well with the previous published
ones, which verifies the solver.

4.4 VIVs of two tandem cylinders
In this test, we apply the solver to two cylinders in a tandem arrangement. The two cylinders are separated by a gap
of ΔL∕d = 0.1. The aim of this test is to demonstrate the capability of the solver for dealing with very closely placed
objects with relative motions. The incoming free-stream flow has a Mach number of Ma = 0.1 and a Reynolds number
of Re = 200 (based on free-stream properties and cylinder diameter). The two cylinders are identical, with a mass ratio
of m∗ = 5.0, a speed ratio of U ∗ = 9, and a damping ratio of 𝜁 = 0.

Figure 17 shows a global view and a local view of the mesh for this case. The overall domain has a size of 66d × 40d.
The front cylinder locates 10d away from the inlet. The domain is divided into four subdomains by three sliding interfaces
(each locates 0.05d away from the cylinder). The overall domain is discretized into 22 220 triangular cells, with 3200 cells
in each moving subdomain. The mesh has been refined around the cylinders and in the wake region to provide good

http://wileyonlinelibrary.com
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FIGURE 17 Global and local views of the mesh for vortex-induced vibrations of two tandem cylinders [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 18 Overview of the vortex-induced vibration displacement histories of two tandem cylinders. (Black) Front cylinder; (Gray) Rear
cylinder

resolution. The boundary conditions are set the same as those for the previous isolated cylinder case. The fourth-order
scheme with a time step size of Δtu∞∕d = 2.0 × 10−4 is used for this simulation.

The simulation was started from a uniform flow field and continued for 1000 time units. Figure 18 shows the displace-
ment history of the cylinders for the complete simulation. We see that the displacement magnitudes for both cylinders
gradually increase and finally converge at about tu∞∕d = 300. For the converged flow, the front cylinder (black curve)
has a vibration magnitude of about ymax∕d = 0.69, and the rear cylinder (gray curve) has a magnitude of ymax∕d = 1.09,
which is obviously larger than that of the front cylinder.

To see the details of the curves, we have plotted a close view from tu∞∕d = 940 to 1000 in Figure 19. The vibrations for
both cylinders are seen to have the same period, which is approximately Tu∞∕d = 8.10. The front cylinder leads the rear
one for about Δtu∞∕d = 1.5, which corresponds to a phase angle of about 66.7◦.

The flow field is visualized using vorticity contours in Figure 20 for approximately one period. We see that as the cylin-
ders move downward, a negative vortex is shed off from the top; as they move upward, a positive vortex is shed off from
the bottom. As a result, a vortex street consisting of an upper row of negative vortices and a lower row of positive vortices
is formed in the wake region. Overall, the rear cylinder behaves like a tail of the front one, where the lag on motion is
reflected as the phase difference that we have observed in the VIV magnitude curves. We also see interactions between the
two cylinders. For example, in Figure 20A, a negative vortex is formed on top of the front cylinder, and then, in Figure 20B,
this vortex is squeezed and pushed through the gap between the cylinders. For this reason, vortex shedding from the front
cylinder is greatly suppressed, resulting in a smaller vibration magnitude than the rear cylinder.

http://wileyonlinelibrary.com
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FIGURE 19 Close view of the vortex-induced vibration displacement histories of two tandem cylinders. (Solid) Front cylinder;
(Dashed) Rear cylinder
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FIGURE 20 Vorticity contours in a period for vortex-induced vibrations of two tandem cylinders (dashed line represents mean position)
[Colour figure can be viewed at wileyonlinelibrary.com]

4.5 VIVs of three cylinders in a row
In this test, we simulate the VIV of a row of three cylinders. The aim of this test is to demonstrate the solver's capability in
dealing with multiple objects with large relative displacements and to test the speedup of parallelization. Each cylinder is
separated by a gap of ΔL∕d = 1.0 from its neighbor(s). Other parameters for the simulation setup are similar to those of
the previous case. For example, the incoming free-stream flow has a Mach number of Ma = 0.1 and a Reynolds number
of Re = 200, and each cylinder has a mass ratio of m∗ = 5.0, a speed ratio of U ∗ = 9, and a damping ratio of 𝜁 = 0.

The mesh for this case is shown in Figure 21, and the partitions for 128 processors are shown in Figure 22. The overall
domain has a size of 74d × 50d. The front cylinder locates 20d away from the inlet. The domain is divided into five
subdomains by four sliding interfaces. These subdomains are discretized into a total number of 51 320 hybrid grids, with
7116 cells in each moving subdomain, 8708 in the front subdomain, and 21 264 in the last subdomain. Once again, the

http://wileyonlinelibrary.com
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FIGURE 21 Global and local views of the mesh for vortex-induced vibrations of three cylinders [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 22 Partitions of a mesh for vortex-induced vibrations of three cylinders on 128 processors

mesh has been refined around the cylinders and in the wake region to provide good resolution. The boundary conditions
are set the same as those for the previous isolated cylinder case. The fourth-order scheme with a time step size ofΔtu∞∕d =
2.0 × 10−4 is used for the simulation.

Figure 23 shows the time history of the displacements for 1000 time units. Compared to the previous tandem-cylinder
case, the flow in the present case shows a more complex nature as indicated by the displacement curves: the magnitudes
first increase, followed by an obvious decrease, and then again increase until reaching the converged states. Convergence
happens at around tu∞∕d = 250, where the vibration magnitudes are found to be ymax∕d = 0.30, 0.90, and 1.07 for
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FIGURE 23 Overview of the vortex-induced vibration displacement history of three cylinders in a row. (Black) Front cylinder;
(Dark gray) Middle cylinder; (Light gray) Rear cylinder
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FIGURE 24 Close view of the vortex-induced vibration displacement history of three cylinders in a row. (Solid) Front cylinder;
(Long dashed) Middle cylinder; (Short dashed) Rear cylinder

the front, middle, and rear cylinders, respectively. It is interesting to notice that the magnitudes increase from front to
rear, which is probably because vortices from the preceding cylinder(s) have enhanced the vibration of the downstream
cylinder(s).

A close view of the displacements is plotted in Figure 24 from tu∞∕d = 940 to tu∞∕d = 1000. It is seen that all curves
show a period of approximately Tu∞∕d = 8.20, which is very close to that of the two tandem cylinders in the previous test.
This is possibly because that the converged flows have approached the vicinity of the lock-on region around the natural
frequency (which is 1∕9 and corresponds to a period of 9). We also see obvious phase differences on the curves. The front
cylinder leads the middle one for about Δtu∞∕d = 3.42, which corresponds to a phase difference of 150◦. The middle
cylinder leads the rear one for about Δtu∞∕d = 3.34, which corresponds to a phase difference of 146.6◦.

The flow field is visualized using vorticity contours in Figure 25 for one period. Overall, we see that the vibration
magnitudes and phase differences are consistent with what were found from the curves. Large vertical distances are
observed in Figure 25B,E between the last two cylinders. In fact, a check of the previous displacement curves shows that
the maximum relative distance is (Δy)max = 1.89 in this simulation. Meanwhile, it is observed that the flow field has
two distinct regions: in the near-field region, we see complex vortex interactions; in the far-field region, vortices are well
organized, with an upper row of negative vortices and a lower row of positive vortices.

The parallelization speedup is tested on this case using up to 240 processors. Figure 26 shows the scalability curve
for different schemes. It is seen that when processor numbers are smaller than 120, the solver obtains an almost linear
speedup. As the processor number further increases, the number of cells on each processor decreases, and interprocessor
communication takes a larger portion of the overall time and slows down the speedup. It is interesting to notice that the
scalability improves as the scheme order (denoted by N) increases. This is consistent with the fact that the computation
cost on each processor is of (N2), whereas the communication cost is of (N).
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FIGURE 25 Vorticity contours in a period for vortex-induced vibrations of a row of three cylinders (dashed line represents mean position)
[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 26 Parallelization speedup on vortex-induced vibrations of three cylinders in a row [Colour figure can be viewed at
wileyonlinelibrary.com]

5 CONCLUSIONS

We have successfully developed a new high-order solver for simulating VIVs. This solver is based on the SD method for
unstructured grids with mixed elements, a new nonuniform sliding-mesh method for overcoming the deformation limi-
tation of traditional conforming meshes, and a monolithic approach for coupling fluid and structure motions seamlessly.
The solver is also successfully parallelized using the message passing interface. Through numerical tests, we have shown
that this solver is high-order accurate for both inviscid and viscous flows. Meanwhile, by simulating the VIV of a single
cylinder, we have demonstrated that this solver is able to accurately capture all the flow features of VIV, and the present
results are found to agree very well with previously published ones. The advantages of this solver have been further

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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exploited by simulating VIVs of very closely placed tandem cylinders: good mesh quality is ensured across sliding inter-
faces where a traditional conforming mesh would most likely fail in such challenging situation. The simulation results
also reveal that the trailing cylinder acts like a tail of the leading cylinder and, therefore, has larger oscillation magni-
tudes. Finally, a simulation of a row of three cylinders has been performed, which successfully demonstrates the solver's
capability in dealing with multiple closely placed vibrating objects with large relative displacements. It is also interesting
to learn from the simulation results that along the flow direction, the vibration magnitude of each cylinder increases con-
sistently. Finally, from this test, the solver is shown to have a good parallel speedup for VIV simulation. These features
altogether make the solver ideal for studying VIV problems at very challenging conditions.
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