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We present a high-order nonuniform sliding-mesh flux reconstruction (FR) method for
studying flows about rotating geometries. This new method is an extension of our previous
methods that require uniform meshes on a sliding interface.1–3 It completely eliminates
the uniform-mesh restriction and thus significantly simplifies mesh generation. Meanwhile,
the nonuniform nature of this method gives the maximum flexibility on mesh points dis-
tribution along a sliding interface, which helps to achieve the best mesh resolution across
the interface. This extension is also crucial to successfully apply it to complex three-
dimensional geometries where the meshes are usually very nonuniform. Numerical tests on
both inviscid and viscous flows successfully demonstrate that the present method is able to
retain the high-order accuracy of the FR method. Finally, we report our high-fidelity and
high-order simulations of flows over rotating cylinders with different cross-section shapes.
These simulation results can be used as benchmark test cases for future studies by the
CFD community.

I. Introduction

Fluid flows around rotating geometries are very common in engineering applications. For example, flows
around marine propellers, wind turbines, helicopter blades, to name just a few. These flows usually carry

a lot of vortical structures that are known to have strong dynamic effects on the equipments. Accurate
simulation of these flows has been a challenge for decades. There are at least two difficulties: one arises
from numerical dissipation that is detrimental to flow structures; the other is how to incorporate complex
rotating geometries into a flow solver both accurately and efficiently.

High-order (third and above) numerical methods are becoming more and more popular in recent years
due to their substantially smaller numerical dissipation than low-order methods.4 Some of the most popular
high-order methods in computational fluid dynamics include: the discontinuous Galerkin (DG) method,5,6

the compact finite difference method,7,8 the spectral element method,9,10 the spectral volume method11,12

and the spectral difference (SD) method.13–17 Among them, the SD method which solves the flow equations
in differential form, is one of the most efficient high-order methods that work with unstructured meshes. The
SD method has seen a fast development in the past decade,18–23 as well as a wide range of applications.24–32

The fact that the stability of the SD method only depends on the location of flux points,18,19 together
with the idea of using higher-degree polynomials to reconstruct fluxes33 have revolutionized the SD method
to an even more efficient method – the flux reconstruction (FR) method (a.k.a. the correction procedure
via reconstruction (CPR)).34–39 Numerical studies confirmed that the FR method is obviously more efficient
than the SD method for simulations on both static and dynamic meshes.40,41 The FR method has even more
advantages: it not only recovers the SD method but also the DG method; it even produces new schemes that
had never been reported before. For these reasons, the FR method is adopted to handle the first difficulty
in the present work.

A couple of methods were developed to overcome the second difficulty. For example, the overset mesh
approach,42 the immersed boundary (IB) method43 and the arbitrary Lagrangian-Eulerian (ALE) method.44
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In the overset mesh method, a foreground mesh enclosing a moving object is overlapped to a background
Cartesian mesh. These two sets of meshes are coupled through an extensive number of searches and inter-
polations, which makes this method expensive and prone to conservation issues. In the IB method, physical
boundaries actually do not present. Instead, artificial body forces are used to force wall boundary conditions
at cell faces. This method thus can not represent physical boundaries accurately, especially for geometries
with curved boundaries. The ALE method is a natural treatment of dynamic meshes under moving frames
of reference. It is usually conservative and is very efficient. However, traditional conforming ALE method is
limited to small or moderate mesh movements. To deal with freely rotating geometries, nonconforming ALE
method, such as sliding-mesh methods are ideal candidates. We previously developed high-order sliding-mesh
approaches for the FR and the SD methods.1–3 In these methods, flow variables and fluxes are projected
back and forth between interface mesh elements and curved dynamic mortar elements to ensure conservation
and to retain high orders of accuracy. Our methods were shown to be not only accurate but also simple and
highly efficient. However, they require mesh elements on both sides of a sliding interface to be of equal size,
which has restricted mesh generation especially mesh points distribution.

In this work, we extend our previous methods to be able to deal with sliding interfaces with arbitrarily
nonuniform mesh. In this method, a cell face could have arbitrary number of mortar elements instead of
only two in our previous methods, and this number could also change with time as the the mesh slides. This
extension has greatly simplified mesh generation, as mesh elements on the two sides of a sliding interface do
not need to be equal any more. The present method also allows improvement of mesh distribution on sliding
interfaces and thus could improve flow filed resolution. We will show that this new method remains simple
and high-order accurate. This method is also readily extensible to three-dimensional simulations.

This paper is organized as follows: Section II gives the governing equations. Section III describes the
numerical methods, including the FR method and the new sliding-mesh method. Accuracy tests and appli-
cations are reported in Section IV. Finally, Section V concludes this paper.

II. Governing Equations

II.A. The Navier-Stokes Equations

The flows of interests are governed by the two-dimensional Navier-Stokes equations that take the following
conservative form,

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (1)

where Q is the vector of conservative variables; F and G are the x and the y flux vectors, respectively. Their
expressions are

Q = [ρ ρu ρv E]T, (2)

F = Finv(Q) + Fvis(Q,∇Q), (3)

G = Ginv(Q) + Gvis(Q,∇Q), (4)

where ρ denotes density; u and v are the x and the y velocity components, respectively; E is the total energy
per volume defined as

E =
p

γ − 1
+

1

2
ρ(u2 + v2), (5)

and p is pressure, γ is the ratio of specific heats and is set to 1.4 (i.e., the value for ideal gas).
As can be seen from Eq. (3) and Eq. (4), the flux vectors have been decomposed into inviscid and viscous

parts. This allows independent treatment of the two parts. The inviscid fluxes are only functions of the
conservative variables, whose expressions are

Finv =




ρu

ρu2 + p

ρuv

(E + p)u


 , Ginv =




ρv

ρuv

ρv2 + p

(E + p)v


 . (6)

2 of 32

American Institute of Aeronautics and Astronautics



Whereas, the viscous fluxes are functions of both the conservative variables as well as their gradients. They
have the following expressions

Fvis = −




0

τxx

τyx

uτxx + vτyx + kTx


 , Gvis = −




0

τxy

τyy

uτxy + vτyy + kTy


 , (7)

where τij is the shear stress tensor which is related to velocity gradients through the following constitutive
equation for Newtonian fluids,

τij = µ(ui,j + uj,i) + λδijuk,k, (8)

and µ is the dynamic viscosity; λ = −2/3µ based on the Stokes’ hypothesis; δij is the Kronecker delta; k
is the thermal conductivity; T represents temperature which is related to density and pressure through the
ideal gas law (a.k.a., equation of state),

p = ρRT, (9)

where R is the gas constant. It is worth noting that, in a wide range of thermal dynamic conditions, the
nondimensional Prandtl number (defined as Pr = µcp/k, where cp = γ/(γ − 1)R is the specific heat at
constant pressure) is almost a constant for air. In this work, we have set Pr = 0.72, from which the thermal
conductivity k is obtained.

II.B. The ALE Transformation

We are going to solve the physical equations in an ALE framework. It means that the equations need to be
transformed to a computational space that is fixed to a moving frame of reference. This process is depicted
in Fig. 1, where a moving physical domain (denoted by V (t)) is mapped to a fixed computational domain

(denoted by Ṽ ).

x

y

~n

V (t)

ξ

η

~N

Ṽ

J

J −1

Figure 1. Mapping between a moving physical domain and a fixed computational domain.

Let (t, x, y) represent the physical time and coordinates, and (τ, ξ, η) the computational ones. Assume
the mapping can be expressed as t = τ , x = x(τ, ξ, η) and y = y(τ, ξ, η). Then, by using the chain rule of
differentiation, it can be shown that the governing equations will take the following conservative form in the
computational space,

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
= 0, (10)

and the computational variable and fluxes are related to the physical ones as




Q̃

F̃

G̃


 = |J |J−1




Q

F

G


 , (11)
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where |J | is the determinant of the Jacobian matrix for mapping, and J−1 is the inverse Jacobian matrix.
Their expressions are

|J | =
∣∣∣∣
∂(t, x, y)

∂(τ, ξ, η)

∣∣∣∣ =

∣∣∣∣∣∣∣

1 0 0

xτ xξ xη

yτ yξ yη

∣∣∣∣∣∣∣
= xξyη − xηyξ, (12)

J−1 =
∂(τ, ξ, η)

∂(t, x, y)
=




1 0 0

ξt ξx ξy

ηt ηx ηy


 =

1

|J |




|J | 0 0

−xtyη + ytxη yη −xη
xtyξ − ytxξ −yξ xξ


 , (13)

where we have used the adjugate matrix of J to derive the expression for J−1; (xt, yt) represent the motion
of the domain, which is prescribed in this study.

It is worth mentioning that in Eq. (11) we have used bold vector symbols to represent the actual scalar
components in order to make the expression simpler. Hereinafter, we follow this convention, and a bold
symbol could either be a vector or one of its scalar components, whichever makes the operation permissible.

II.C. The Geometric Conservation Law

For moving meshes, to ensure free-stream preservation (i.e., a constant free-stream flow should always stay
constant), the following geometric conservation law (GCL)45 also needs to be considered,





∂(|J |ξx)

∂ξ
+
∂(|J |ηx)

∂η
= 0, (14)

∂(|J |ξy)

∂ξ
+
∂(|J |ηy)

∂η
= 0, (15)

∂|J |
∂t

+
∂(|J |ξt)
∂ξ

+
∂(|J |ηt)
∂η

= 0. (16)

The GCL is achieved by substituting a constant flow solution into the governing equations. It is obvious
that the GCL is only related to geometrics, and is independent of flow field. The physical meaning of the
GCL is more evident if we integrate these equations over a control volume. The first two equations actually
means that a closed element must stay closed all the time, and the last equation says that the volume change
rate must be equal to the expanding speed of the boundaries.

III. Numerical Methods

This section describes the numerical methods for solving the governing equations, which include the map-
ping methods for mesh elements, the FR method with a new sliding-mesh method for spatial discretization,
and an explicit Runge-Kutta scheme for temporal discretization.

III.A. Iso-parametric and Transfinite Mappings

We map each physical mesh element to a standard computational element (i.e., 0 ≤ ξ, η ≤ 1) using the
following iso-parametric mapping,46

(
x(t, ξ, η)

y(t, ξ, η)

)
=

K∑

i=1

Mi(ξ, η)

(
xi(t)

yi(t)

)
, (17)

where K is the number of nodes to define a physical element, (xi, yi) are the physical coordinates of the i-th
node, and Mi is the shape function associated with the i-th node.

Fig. 2 shows schematics of three iso-parametric representations (thin black lines) of a physical curved
element (thick gray lines). It is obvious that as the number of nodes increases, an iso-parametric represen-
tation approximates the exact shape more closely. For this reason, we use cubic representation (i.e., K=12)
along all curved boundaries (except circular boundaries) in this work.
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x
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(a)
x
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y

(c)
ξ

η

(d)

Figure 2. Iso-parametric representations (black lines) of a curved element (wide gray lines): (a) linear representation,
K = 4, (b) quadratic representation, K = 8, (c) cubic representation, K = 12, (d) a standard computational element.

To minimize geometric errors along sliding interfaces (where each mesh element has a circular edge),
we have adopted the transfinite mapping47,48 for cells along sliding boundaries. In transfinite mapping, an
element is represented by a direct sum of its boundaries. For example, as shown in Fig. 3, if the faces

~X1
~X2

~X3
~X4

~Xf1(ξ)
~X
f
2 (η

)

~Xf3(ξ)

~ X
f
4
(η
)

x

y

(0, 0) (1, 0)

(1, 1)(0, 1)

η = 0

ξ
=

1

η = 1

ξ
=

0

ξ

η

Figure 3. Transfinite mapping of a physical element to a standard square element.

and nodes of a quadrilateral element are ~Xfi and ~Xi, respectively, where i = 1, 2, 3, 4, then the transfinite
representation of that element is

~X(ξ, η) = (1− η) ~Xf1(ξ) + ξ ~Xf2(η) + η ~Xf3(ξ) + (1− ξ) ~Xf4(η)

− (1− ξ)(1− η) ~X1 − ξ(1− η) ~X2 − ξη ~X3 − (1− ξ)η ~X4,
(18)

where ~X = (x, y). If a cell face has an exact expression, then the above representation is exact along that

face. In our case for a circular cell face (e.g., face ~Xf1 in Fig. 3), it can be analytically expressed as

~Xf1(ξ) =

[
R · cos

(
(1− ξ)θ1 + ξθ2

)
+ xc

R · sin
(
(1− ξ)θ1 + ξθ2

)
+ yc

]
, (19)

where R and (xc, yc) are the radius and the center of that circular face, respectively; θ1 and θ2 are the
angles of the first and the second nodes. For a cell face whose analytical expression is not available, then
1D iso-parametric representation can be used for that face. In fact, the 2D iso-parametric mapping in Eq.
(17) is a special case of the transfinite mapping, where all cell faces have been approximated by 1D iso-
parametric representation. The iso-parametric mapping is popular due to its universality and simplicity for
implementation. However, when an analytical expression for a boundary is known, the transfinite mapping
should be considered if one wants to minimize the geometric errors.

III.B. The FR Method

In contrast to the SD method where two sets of points (i.e., solution points (SPs) and flux points (FPs)) are
defined within a standard element, these two sets of points collocate inside an element in the FR method.
Therefore, for simplicity, we refer the interior points in the FR method as SPs and those on the boundaries as
FPs. Fig. 4 shows a schematic of the distribution of SPs and FPs for a fourth-order FR scheme. Generally,
for an N -th order FR method, N SPs are defined along each coordinate direction, and N FPs are required
on each boundary face. The collocation of points has avoided the interpolation of solutions from SPs to FPs
in the interior of an element, and thus improves computational efficiency.
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0 ξ 1

1

η

Figure 4. Schematic of the distribution of solution points (circular dots) and flux points (square dots) for a fourth-order
FR scheme.

In the present implementation, the SPs and FPs for an N -th order scheme are chosen as the N Legendre
points, i.e., the roots of the following N -th degree Legendre polynomial,

Pn(X) =
2n− 1

n
(2X − 1)Pn−1(X)− n− 1

n
Pn−2(X), with P−1 = 0, P0 = 1, (20)

where X denotes either ξ or η. If we use Xs to denote the SPs, then the following Lagrange interpolation
basis is readily defined at the i-th SP,

hi(X) =

N∏

s=1,s6=i

(
X −Xs

Xi −Xs

)
, (21)

where Xi is the coordinate of the i-th SP.
The solution and flux polynomials are constructed simply using tensor products of the above interpolation

basis. This process can be formulated as

Q̃(ξ, η) =

N∑

j=1

N∑

i=1

Q̃i,jhi(ξ)hj(η), (22)

F̃(ξ, η) =

N∑

j=1

N∑

i=1

F̃i,jhi(ξ)hj(η), (23)

G̃(ξ, η) =

N∑

j=1

N∑

i=1

G̃i,jhi(ξ)hj(η), (24)

where Q̃i,j , F̃i,j and G̃i,j are the computational variable and fluxes at the (i, j)-th SP within a standard
element, respectively.

These constructed polynomials are only continuous within each element, but discontinuous across element
interfaces. To ensure continuity and conservation, common values need to be computed on the interfaces
(i.e., element boundaries). At the same time, due to the existence of first-degree spatial derivatives on the
fluxes in Eq. (10), the flux polynomials need to be reconstructed to be one-degree higher than the solution
polynomial to ensure accuracy.

In the present implementation, the common solution on an interface is taken as the average of the left
and the right solutions,

Qcom =
1

2
(QL + QR), (25)

where QL and QR are the left and the right solutions, respectively. The common inviscid flux is computed
using a Riemann solver, for example, the Rusanov solver,49

Fcominv =
1

2
[(FLinv + FRinv)n− λ(QR −QL)], (26)
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where λ = |Vn|+ c is the largest characteristic speed, Vn is the normal velocity, c is the local speed of sound,
FLinv and FRinv are the left and the right discontinuous inviscid fluxes, respectively. The common gradient of
solution is also taken as the averaged value,

(∇Q)com = ((∇Q)L + (∇Q)R)/2. (27)

The common viscous flux is then computed from the common solution and common gradient,

Fcomvis = Fvis(Q
com, (∇Q)com). (28)

Common fluxes in the other direction, i.e., Gcom
inv and Gcom

vis are computed in the same way. These physical
common solution and fluxes are converted to computational ones following Eq. (11).

The flux polynomials are reconstructed to be one-degree higher using correction functions. For example,
the corrected polynomial F̃c for F̃ in the ξ direction is

F̃c(ξ) = F̃(ξ) + (F̃comL − F̃L) · gL(ξ) + (F̃comR − F̃R) · gR(ξ), (29)

where F̃comL and F̃comR are the common fluxes at ξ = 0 and 1, respectively; F̃L = F̃(0) and F̃R = F̃(1) are
the original discontinuous fluxes at ξ = 0 and 1, respectively; gL(ξ) and gR(ξ) are the left and the right
correction functions, respectively. These correction functions are polynomials one-degree higher than the
original flux polynomials. Furthermore, they are required to satisfy

gL(0) = 1, gL(1) = 0, gR(0) = 0, gR(1) = 1. (30)

These conditions ensure that the flux is continuous and takes the common values on cell boundaries. A
few correction functions are available,33,34 and we use the gDG correction function (which recovers the DG

scheme) in this work. Similarly, the same correction is applied to G̃ along the η direction, and to Q̃ along
both directions (for computing the discontinuous gradients, e.g. those on the right hand side of Eq. (27)).

Finally, the residual is computed by substituting the corrected fluxes back into the governing equations,

∂Q̃

∂t
= −∂F̃c

∂ξ
− ∂G̃c

∂η
. (31)

Details on the time-marching scheme will be discussed in a later section.

III.C. A Nonuniform Sliding-mesh Method

To deal with rotating geometries, we decompose a computational domain into non-overlapping subdomains
using sliding interfaces. A subdomain enclosing a rotating geometry can rotate freely with respect to its
neighboring subdomain, resulting in nonconforming meshes in between. Fig. 5 shows a schematic of the
simplest situation where only one sliding interface presents. We use curved dynamic mortar elements for
communication between the two subdomains. As can be seen, a mortar is formed between two successive
mesh points from the two sides of an interface. A mortar is always connected to a left and a right cell face,
while a cell face may have one or more mortars. These mortar and face connectivities need to be updated
at every sub-time-step of a time marching scheme.

Figure 5. Schematic of the distribution of mortars (hatched) between a rotating mesh and a stationary mesh (inner
domain has been scaled to show mortars in the middle).
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Before updating connectivities, cell faces on both sides of a sliding interface are reordered counterclockwise
and put into a list. This reordering is done during preprocessing, and needs to be done only once. We refer
the inner side of an interface as left (denoted by ‘l’ or ‘L’), and the outer side as right (denoted by ‘r’ or
‘R’). If there are nfl cell faces on the left and nfr on the right, then the total number of cell faces is
nf = nfl+nfr, and the total number of mortars is always nm = nf . We define four arrays: vof(1:nf, 1:2),
mof(1:nf, 1:2), fom(1:nm, 1:2) and vom(1:nm, 1:2), to store the vertices of face, mortars of face, faces of
mortar and vertices of mortar, respectively. To be more specific, vof(1:nfl, 1:2) store vertices of faces on
the left side, and vof(nfl + 1:nf, 1:2) store those on the right side; mof(ifa, 1:2) store the first mortar and
the number of mortars, respectively, for face ifa; fom(im, 1:2) store the left and the right face of mortar im,
respectively; vom(im, 1:2) store the two vertices of mortar im. The detailed procedures for updating these
connectivities at every sub-time-step are listed in Algorithm 1.

Algorithm 1 Algorithm for updating mortar and face connectivities

mof=0; fom=0; vom=0 . initiate with zeros

if l = 1
for ifr = (nfl + 1) to nf do

if vof(if l, 1) lies between vof(ifr, 1) and vof(ifr, 2) then . the first mortar is located
Exit

end if
end for

im← 1
mof(if l, 1)← im . connectivities of the first mortar
mof(if l, 2)← mof(if l, 2) + 1
mof(ifr, 2)← mof(ifr, 2) + 1
fom(im, 1)← if l
fom(im, 2)← ifr
vom(im, 1)← vof(if l, 1)

for im = 2 to nm do . connectivities of remaining mortars
if vof(if l, 2) lies between vof(ifr, 1) and vof(ifr, 2) then

if l← if l + 1
ifa← if l

else
ifr ← ifr + 1
if (ifr > nfl + nfr) then

ifr ← ifr − nfr
end if
ifa← ifr

end if

mof(ifa, 1)← im
mof(if l, 2)← mof(if l, 2) + 1
mof(ifr, 2)← mof(ifr, 2) + 1
fom(im, 1)← if l
fom(im, 2)← ifr
vom(im, 1)← vof(ifa, 1)
vom(im− 1, 2)← vof(ifa, 1)

end for

vom(nm, 2)← vom(1, 1) . mortars always form a closed loop

Since a cell face is mapped to a straight edge (e.g. 0 ≤ ξ ≤ 1) when the underlying cell is mapped to a
standard square element, we also map each curved mortar element to a straight one (i.e. 0 ≤ z ≤ 1) in the
mortar space using the transfinite mapping. Fig. 6 demonstrates this process, where Ω stands for cell face
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Ω .
.
.

Ξ
1

Ξ2

Ξn

Ω

Ξ1

Ξ2

Ξn

...

Figure 6. Mapping of curved cell face and mortars to straight ones: left, curved face and mortars in physical domain;
right, straight face and mortars in computational domain.

and Ξ for mortar. The mortar space and the computational space are related as

ξ = o(t) + s(t)z, (32)

where o is the offset of a mortar and s is the scaling, both with respect to the cell face. For example, for the
i-th mortar in Fig. 6, we have

si = LΞi/LΩ, oi =
∑i−1

k=1
sk, (33)

where LΞi is the physical length of the i-th mortar, LΩ is the length of the cell face. It is worth noting that,
the offset, scaling and lengths are all time dependent and need to be updated every sub-time-step of a time
marching scheme.

From the constructed 2D solution polynomial in Eq. (22), the solution on a cell face is represented by
the following one-dimensional polynomial,

QΩ =

N∑

i=1

QΩ
i hi(ξ), (34)

where QΩ
i is the solution at the i-th SP on Ω. Similarly, the solution polynomial on the left side of a mortar

is

QΞ,L =

N∑

i=1

QΞ,L
i hi(z), (35)

where QΞ,L
i is the unknown solution at the i-th SP on the left side of mortar Ξ. To compute for QΞ,L

i , we
require ∫ 1

0

(
QΞ,L(z)−QΩ(ξ)

)
hj(z)dz = 0, j = 1, 2, ..., N. (36)

Solution of this equation system when written in matrix form is

QΞ,L
1:N = PΩ→ΞQΩ

1:N = M−1SΩ→ΞQΩ
1:N , (37)

where PΩ→Ξ is the projection matrix from Ω to Ξ, and the elements of the M and SΩ→Ξ matrices are

Mi,j =

∫ 1

0

hi(z)hj(z)dz, i, j = 1, 2, ..., N, (38)

SΩ→Ξ
i,j =

∫ 1

0

hi(oi + siz)hj(z)dz, i, j = 1, 2, ..., N. (39)

The integrals on the right hand side can be evaluated numerically, for example, using the Clenshaw-Curtis
quadrature method. This projection process is demonstrated schematically in Fig. 7(a). In the same way,
the right solution QΞ,R can be achieved. The common solution and common inviscid fluxes are computed
in the same way as discussed in the previous section for cell interfaces, and they are

QΞ
1:N =

1

2
(QΞ,L

1:N + QΞ,R
1:N ), (40)
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(FΞ
inv)1:N =

1

2

[(
(FΞ,L

inv )1:N + (FΞ,R
inv )1:N

)
n− λ(QΞ,R

1:N −QΞ,L
1:N )

]
, (41)

where n and λ have the same meanings as those in Eq. (26). The flux polynomials on a cell face and on a
mortar (i.e. FΩ

inv(ξ) and FΞ
inv(ξ)) are constructed in the same way as for the solutions.

Ω Ξ

(a)

Ω

Ξ1

Ξ2

Ξn

...

(b)

Figure 7. Projection between cell face and mortar: (a) from a left face to the left side of a mortar, (b) from mortars
back to the left face.

As shown in Fig. 7(b), to project the common inviscid flux back to the cell face, we require

n∑

i=1

∫ oi+si

oi

(
FΩ
inv(ξ)− FΞi

inv(z)
)
hj(ξ)dξ = 0, j = 1, 2, ..., N. (42)

The solutions of this equation system have the following matrix form,

(FΩ
inv)1:N =

n∑

i=1

PΞi→Ω(FΞi
inv)1:N =

n∑

i=1

siM
−1SΞi→Ω(FΞi

inv)1:N , (43)

where the M matrix is identical to that in Eq. (37), the SΞi→Ω matrix is simply the transposes of SΩ→Ξi .
The common solutions are projected back in the same way as Eq. (42) and are employed to compute local
viscous fluxes. These local viscous fluxes are then projected to mortars following Eq. (36). The common
viscous fluxes on a mortar are then computed as the average,

(FΞ
vis)1:N =

1

2

(
(FΞ,L

vis )1:N + (FΞ,R
vis )1:N

)
, (44)

and they are projected back to cell faces following Eq. (42).

III.D. Time Marching and Treatment of GCL

The governing equations can now be written in the following residual form

∂Q̃

∂t
= R(Q), (45)

where the residual is

R = −∂F̃c
∂ξ
− ∂G̃c

∂η
, (46)

and F̃c and G̃c are the corrected (reconstructed) fluxes. The following explicit Runge-Kutta method is
adopted for the time marching,

Q̃n+1 = Q̃n + ∆t

s∑

m=1

bmkm, (47)

where the intermediate residuals are

k1 = R
(
tn,Q

n
)
,

k2 = R
(
tn + c2∆t,Qn + ∆t(a21k1)

)
,...

ks = R
(
tn + cs∆t,Q

n + ∆t(as1k1 + as2k2 + · · ·+ as,s−1ks−1)
)
.

(48)
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In this work, we have used an explicit five-stage forth-order strong stability preserving Runge-Kutta scheme,
and the coefficients (i.e. a’s and b’s) can be found in previous papers.50,51

To numerically satisfy the free-stream preservation condition on dynamic meshes, the GCL equations (14)-
(16) need to be discretized using the same temporal and spatial schemes as those for the governing equations.
Since the spatial discretization in the FR method is direct differentiation and the geometric variables are
computed analytically from the iso-parametric or transfinite mapping, the first two GCL equations are
satisfied automatically. However, the geometric variables generally do not satisfy the third GCL equation
automatically due to the temporal discretization which is not analytical. To numerically satisfy the third
GCL equation, we treat |J | as an unknown, and use the Runge-Kutta time marching scheme to update it.

This numerically obtained |J | is then used to compute the physical solution (i.e. Q = Q̃/|J | according to
Eqs. (11) and (13)). In this way, the GCL is numerically satisfied, and free-stream preservation is ensured.

IV. Numerical Tests

We first verify the accuracy on an inviscid flow and a viscous flow. Following that, two comparison
studies are carried out: one compares flow over a rotating circular cylinder on a sliding mesh to that on a
static mesh with prescribed boundary velocities; the other compares flow over a rotating elliptic cylinder on
a sliding mesh to that on a rigid-rotating o-type mesh. Finally, simulations of flows over a rotating triangular
cylinder, a rotating square cylinder and two tandem rotating square cylinders are performed.

IV.A. Accuracy on Euler-vortex Flow

In Euler-vortex flow, an isentropic vortex is superimposed to a uniform mean flow and is convected by the
mean flow. The flow field in an infinite domain at time t can be analytically described as,

u = U∞

{
cos θ − εyr

rc
exp

(
1− x2

r − y2
r

2r2
c

)}
, (49)

v = U∞

{
sin θ +

εxr
rc

exp

(
1− x2

r − y2
r

2r2
c

)}
, (50)

ρ = ρ∞

{
1− (γ − 1)(εM∞)2

2
exp

(
1− x2

r − y2
r

r2
c

)} 1
γ−1

, (51)

p = p∞

{
1− (γ − 1)(εM∞)2

2
exp

(
1− x2

r − y2
r

r2
c

)} γ
γ−1

, (52)

where U∞, ρ∞, p∞, M∞ are the mean flow speed, density, pressure and Mach number, respectively; θ is
the direction of the mean flow; ε and rc are vortex strength and size, respectively; (xr, yr) = (x − x0 −
ūt, y − y0 − v̄t) are the relative coordinates; (x0, y0) are coordinates of the initial position of the vortex;
(ū, v̄) = (U∞ cos θ, U∞ sin θ) denote the mean velocity.

In the present test, the mean flow is (U∞, ρ∞) = (1, 1) with a Mach number M∞ = 0.3. The background
pressure, p∞, is computed from ρ∞ and M∞. The flow direction is set to θ = arctan(1/2). A vortex with
ε = 1, rc = 1, is superimposed to the mean flow. The domain size is 0 ≤ x, y ≤ 10. The vortex is initially
placed at the domain center, i.e., at (x0, y0) = (5, 5). Analytical Dirichlet boundary conditions are applied
to all boundaries all the time.

Fig. 8 shows two density contours on top of the mesh. The overall domain has been discretized into 192
mesh elements and divided into two subdomains: an inner subdomain with a radius of 2 and 44 elements; an
outer one that takes the rest of the domain with 148 elements. The inner subdomain rotates at an angular
speed of ω = 1, while the outer subdomain is fixed. Each side of the sliding interface is meshes randomly
into 16 nonuniform segments. As can be seen from the contours, this nonconforming sliding interface does
not cause any visible alteration to the shape of the vortex, which indicates qualitative correctness of the
sliding-mesh method.

We have employed three types of errors to quantitatively measure the accuracy of the solver, and they
have the following definitions (taking ρ as an example),

L1 error =

∑DOF
s=1 |ρs − ρexact

s |
DOF

, (53)
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L2 error =

√∑DOF
s=1 (ρs − ρexact

s )2

DOF
, (54)

L∞ error = max
1≤s≤DOF

|ρs − ρexact
s | (55)

where DOF = Nelem ·N2 is the total number of degrees of freedom, Nelem is the total number of elements,
N is the scheme order (i.e., number of SPs in each coordinate direction), ρs and ρexact

s are the numerical and
the exact solutions at the SPs, respectively.

Figure 8. Density contours of the Euler-vortex flow at t = 0 (left) and t = 2 (right) from the 4th-order scheme.

In Fig. 9, we have plotted the errors (computed from density) against the scheme order. It is seen that,
from 2-nd to 10-th orders, all errors decrease exponentially as the scheme order increases, which clearly
demonstrates that the nonuniform sliding-mesh method has well retained the high-order accuracy of the FR
method on this inviscid flow.

N
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2 4 6 8 10
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10-5

10-4

10-3

10-2

L1 error
L2 error
L error

Figure 9. Errors against scheme order on the Euler-vortex flow.

IV.B. Accuracy on Taylor-Couette Flow

Taylor-Couette flow is formed between two concentric rotating circular cylinders. Due to viscous effects, this
flow will finally reach a steady state if the Reynolds number is small. The steady-state azimuthal flow speed
has the following expression,
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vθ = ωiri
ro/r − r/ro
ro/ri − ri/ro

+ ωoro
r/ri − ri/r
ro/ri − ri/ro

, (56)

where ri and ro are the radii of the inner and outer boundaries; ωi and ωo are the inner and outer angular
velocities. In the present setup, we have ri = 1, ro = 2, ωi = 1 and ωo = 0. No-slip isothermal wall boundary
conditions are applied to both cylinders. The inner wall has fixed Mach number and pressure, and the Mach
number is 0.1. The Reynolds number based on inner wall speed and radius is Re = 10.

Fig. 10 shows contours of the converged flow field on top of the mesh. The domain is decomposed into
two subdomains by a sliding interface at r = 1.5. The inner and the outer subdomains are discretized into
36 and 40 cells, respectively. Mesh points are distributed nonuniformly along the sliding interface. The
rotating speed of the inner subdomain is ω = ωi. The sliding interface and the cylinders are represented
by the transfinite mapping as described in Section III.A. As can be seen, the u-velocity contours shows an
antisymmetric pattern, and the Mach contours are simply a series of concentric circles. These patterns agree
with the analytical solution. The sliding interface again does not contaminate the flow field at all.

Figure 10. Steady state contours of the Taylor-Couette flow from the 4th-order scheme.

To compute the spatial errors, we continued all simulations to t = 35 to make sure that they are well
converged. Meanwhile, a time step size of ∆t = 1.0× 10−4 was used for all cases to minimize temporal error
contributions. The numerical errors are computed based on the steady-state u-velocity, and are plotted
against the scheme orders in Fig. 11. Again, the errors are seen to decrease exponentially as the scheme
order varies from 2 to 10. Therefore, the sliding-mesh method retains the high-order accuracy of the FR
method on this viscous flow as well.
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Figure 11. Errors against polynomial order on the Taylor-Couette flow.
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IV.C. Comparison study of Flow over a Rotating Circular Cylinder

Due to the isotropic shape, simulation of flow passing a rotating circular cylinder is feasible even on static
mesh by simply applying the appropriate velocity boundary conditions. The aim of this test is to verify the
solver by comparing flows passing a rotating circular cylinder on a sliding mesh and a static mesh. Ideally,
the two configurations should give the same results if the method and solver are correct.

Fig. 12 shows global and local views of the two meshes. Both domains have an overall size of 100× 100.
The cylinder has a diameter of D = 1 and is located 30 units away from the inlet. It rotates at an angular
speed ω0D/U∞ = π/2 (i.e., with a rotating frequency of f0D/U∞ = 0.25 and period of T0U∞/D = 4). As
can be seen, meshes are refined around the cylinders as well as in the wake region, but coarsened out very
quickly towards outer boundaries. The total number of cells is 9,240 for the static mesh, and 8,569 for the
sliding mesh, resulting in similar mesh resolution. The minimum mesh spacing is about 0.03, and is found
on the first layer of mesh normal to the cylinder surface. The maximum mesh size is about 20, which is
found on the outer boundaries. No-slip adiabatic wall boundary condition is applied on the cylinder surface,
and characteristic farfield boundary conditions are applied to the outer boundaries. The Reynolds number
based on free-stream flow properties and the cylinder diameter is Re = 100. The incoming free-stream flow
has a Mach number of Ma = 0.1.
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Figure 12. Global and local views of the sliding mesh (blue circle represents sliding interface) and the static mesh
(right) for a rotating circular cylinder.

We have tested the 4-th to 6-th order schemes to ensure enough resolution. The strong-stability-preserving
five-stage fourth-order Runge-Kutta scheme50,51 is used for time marching, and the time step size is set to
∆tU∞/D = 2.0 × 10−4. All simulations are started from a uniform free-stream flow field. In Fig. 13, we
compare the transient lift and drag coefficients from the two meshes and from the 4-th and the 6-th order
schemes. We see no difference on the curves from the static mesh and the sliding mesh even when the flow
still experiences very unsteady development in this process. This clearly demonstrates the correctness of the
sliding-mesh method for dealing with rotating geometries. We also see no difference on the results from the
4-th and the 6-th order schemes, which indicates that mesh and scheme independent solutions are obtained.
For this reason, we only report results from the 6-th order scheme hereinafter for this test.

The simulations were continued for 50 rotating periods, i.e., to tU∞/D = 200. The converged lift and
drag coefficients from the 6-th order scheme on the sliding mesh are plotted in Fig. 14 from tU∞/D = 160
to 200. It is seen that the cylinder experiences a positive drag and negative lift all the time. Furthermore,
it is very interesting to notice from these curves that the flow seems to be periodic and the period (which
is approximately 6) differs from the rotating period of the cylinder (which is T0U∞/D = 4). This is due to
the isotropic shape of the circular cylinder which exerts a continuous disturbance instead of a periodic one
to the flow.

It is necessary to check if the fully developed flow is indeed periodic or not. This can be achieved by
checking, for example, the Lissajous curve of CL and CD for multiple periods. If a Lissajous curve repeats
itself with time, then the flow is periodic. We plot this curve in Fig. 15 for the sliding mesh case, where
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Figure 13. Comparison of transient lift and drag coefficients for a rotating circular cylinder from the 4-th and the 6-th
order schemes on a static and a sliding meshes.
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Figure 14. Converged lift and drag coefficients for flow over a rotating circular cylinder.

the curve represents the history from tU∞/D = 120 to 200, i.e. for 20 rotating periods. We see that the
Lissajous curve very well repeats itself, which clearly demonstrates the periodic nature of the flow.

We further decompose the lift and drag coefficients into steady and unsteady components as: CL =
C̄L + cL, CD = C̄D + cD, where C̄L and C̄D are the mean coefficients, and cL and cD are the time-variant
parts. For this flow, the mean coefficients achieved from time averaging are found to be: C̄L = −1.930 and
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Figure 15. Lissajous curve of CL and CD in 20 rotating periods (from tU∞/D = 120 to 200) for a rotating circular
cylinder.

C̄D = 1.205. To calculate the flow period, we compute the power spectrum of cL and cD, and the results
are plotted in Fig. 16. We see two peaks on each spectrum curve at fD/U∞ = 0.1655 and 0.3310. It is
interesting to notice that the latter frequency is twice of the former, but with a much smaller spectrum
amplitude. These two frequencies correspond to two periods of TU∞/D = 6.04 and 3.02, respectively.
Therefore, the characteristic period of the flow is TU∞/D = 6.04, which is consistent with what we observed
from the lift and drag coefficient curves in Fig. 14.
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Figure 16. Spectrum of unsteady lift and drag coefficients for flow over a rotating circular cylinder.
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In Fig. 17 we compare the flow fields from the two meshes by visualizing vorticity contours at several
time instants. As can be seen, contours from the sliding mesh (represented by lines) are visually identical
to those from the static mesh (represented by colors). A vortex street consisting of negative and positive
vortex pairs is formed behind the cylinder. Due to viscous effects, it is seen that the strength of vortices
decays as the flow travels downstream.

zD/U: -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(a) tU∞/D = 195 (e) tU∞/D = 198

(b) tU∞/D = 196 (f) tU∞/D = 199

(c) tU∞/D = 197 (g) tU∞/D = 200

Figure 17. Comparison of vorticity contours from sliding mesh (lines) and static mesh (colors) for flow over a rotating
circular cylinder.

IV.D. Comparison study of Flow over a Rotating Elliptic Cylinder

In this test, we simulate flow over a rotating elliptic cylinder using a sliding mesh and a rigid-rotating
mesh (whole domain rotates). The cylinder has a major axis length of A = 1.0 and a minor axis length of
B = 0.5. It rotates counterclockwise at an angular speed of ω0A/U∞ = π/2 (i.e., with a rotating frequency
of f0A/U∞ = 0.25 and period of T0U∞/A = 4). The freestream flow has a Mach number of Ma = 0.1, and
a Reynolds number of Re = 100 (based on cylinder major axis length and freestream flow properties).

Fig. 18 shows global and local views of the two meshes. The sliding-mesh case has a domain size of
100 × 100, and the cylinder locates 30 units away from the inlet. The rigid-rotating case has a circular
domain with a radius of 50, and the cylinder locates at the center of the domain. The sliding mesh has a
total number of 8,769 cells, with 400 within the sliding subdomain whose radius is 0.8. The rigid-rotating
mesh has a total number of 9,060 cells. For each case, the cylinder surface is treated as no-slip adiabatic
wall, and all other boundaries are treated as characteristic farfield. Three schemes with orders of accuracy
from 4 to 6 are tested. The same time step size of ∆tU∞/A = 2.0× 10−4 is used for all tests.

Fig. 19 compares the transient lift and drag coefficients from the 4-th and 6-th order schemes on the
rigid-rotating and the sliding meshes. We see no difference between any two of them, which clearly indicates
that nonconforming sliding mesh does not deteriorate the solution compared to a conforming mesh, and the
present scheme order and mesh provide enough resolution for producing accurate solutions. For this reason,
unless otherwise stated, all results reported hereinafter for this test are from the 6-th order scheme and the
sliding mesh.
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Figure 18. Global and local views of the sliding mesh (blue circle represents sliding interface) and the rigid-rotating
mesh (right) for a rotating elliptic cylinder.
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Figure 19. Comparison of transient lift and drag coefficients for a rotating elliptic cylinder from the 4-th and the 6-th
order schemes on a rigid-rotating mesh and a sliding mesh.

The converged lift and drag coefficients are plotted in Fig. 20 from tU∞/D = 160 to 200. It is consistent
with the circular cylinder that this elliptic one experiences a negative lift and positive drag all the time. The
mean lift and drag coefficients (averaged over 160 time units) are found to be C̄L = −1.488 and C̄D = 1.095,
both having smaller magnitudes than those of the circular cylinder. It is also obvious that these curves show
a less periodic pattern than those of the circular one. The Lissajous curve of CL and CD are plotted in
Fig. 21 to check the periodicity of the flow. As can be seen, the curve does not always repeat itself, which
indicates a complex frequency distribution in the flow.

The power spectrum of the unsteady lift and drag coefficients (i.e., cL and cD) are plotted in Fig. 22.
We see five obvious peaks at the frequencies of fD/U∞ = 0.1875, 0.3125, 0.5, 0.6875 and 1.0, respectively.
The largest peak is found at fD/U∞ = 0.5, which is induced by the rotating motion that applies a periodic
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Figure 20. Converged lift and drag coefficients for flow over a rotating elliptic cylinder.
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Figure 21. Lissajous curve of CL and CD in 20 rotating periods (from tU∞/D = 120 to 200) for a rotating elliptic
cylinder.

disturbance to the flow filed (it’s twice of the rotating frequency because of the geometric symmetry of the
elliptic cylinder). Therefore, this flow is obviously dominated by the rotating motion.

We plot and compare the flow fields from the sliding mesh and the rigid-rotating mesh in Fig. 23 and
Fig. 24. It is evident that the sliding mesh delivers cleaner results than the rigid-rotating mesh as there are
fewer wiggles on the contours. This is in fact caused by grid resolution in the wake region. Although the
rigid-rotating mesh has slightly more grid points than the sliding-mesh, but the mesh needs to be distributed
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Figure 22. Spectrum of unsteady lift and drag coefficients for flow over a rotating elliptic cylinder.

as uniform as possible in the azimuthal direction around the cylinder to make sure that the wake region
always has fair mesh resolution as the overall domain rotates. Therefore, at each time instant, a majority
of the grids are wasted in non-wake regions for a rigid-rotating mesh. In contrast, for a sliding mesh, only a
small part of the domain rotates, and the wake region is fixed and can be effectively refined. For this reason,
a sliding mesh could save a lot of grids compared to a rigid-rotating mesh, and therefore it could potentially
reduce the overall computational cost.

zA/U: -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(a) tU∞/A = 196.5 (c) tU∞/A = 198.5

(b) tU∞/A = 197.5 (d) tU∞/A = 199.5

Figure 23. Vorticity contours for flow over a rotating elliptic cylinder using a sliding mesh.
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Figure 24. Vorticity contours for flow over a rotating elliptic cylinder using a rigid-rotating mesh.

IV.E. Flow over a Rotating Triangular Cylinder

In this test, we study flow over a rotating triangular cylinder using the sliding-mesh solver. The cylinder is
equilateral, with an edge length of A = 1.0. It rotates counterclockwise around its geometric center again at
an angular speed of ω0A/U∞ = π/2. The freestream flow has a Mach number of Ma = 0.1, and a Reynolds
number of Re = 100 (based on cylinder edge length and freestream flow properties).

Fig. 25 shows global and local views of the mesh. The overall domain size is 100× 100, and the cylinder
locates 30 units away from the inlet. The domain is discretized into 8,750 cells, with 381 within the rotating
subdomain (with a radius of 0.8). The cylinder surface is treated as adiabatic wall, and all other boundaries
are treated as characteristic farfield. The time step size for computation is ∆tU∞/A = 2.0 × 10−4. Three
schemes with orders of accuracy from 4 to 6 have been tested to ensure mesh- and scheme-independent
solution, and all results reported below are from the 6-th order scheme.
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Figure 25. Mesh for a rotating triangular cylinder (blue circle indicates sliding interface).

Fig. 26 plots the time history for CL and CD from tU∞/D = 160 to 200. Similar to the circular cylinder
case, this triangular cylinder also experiences an always-negative lift and always-negative drag. The mean
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values from time averaging over 170 time units are found to be C̄L = −2.083 and C̄D = 1.240. The Lissajous
curve for CL and CD is plotted in Fig. 27, and it does not always repeat itself, which indicates a complex
nature of the flow periodicity.
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Figure 26. Converged lift and drag coefficients for flow over a rotating triangular cylinder.
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Figure 27. Lissajous curve of CL and CD in 20 rotating periods (from tU∞/D = 120 to 200) for a rotating triangular
cylinder.

To see the dominant frequencies in the flow, we have computed the power spectrum of cL and cD, and the
results are plotted in Fig. 28. The corresponding frequencies of the four peaks are fD/U∞ = 0.164, 0.586,
0.75 and 0.914, respectively. The largest peak is found at the frequency fD/U∞ = 0.75, which is three times
the rotating frequency (i.e., f0D/U∞ = 0.25) due to the geometric symmetry of the three vertices. For this
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reason, this flow is still mostly dominated by the rotating motion.
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Figure 28. Spectrum of unsteady lift and drag coefficients for flow over a rotating triangular cylinder.

The flow fields at several time instants are plotted in Fig. 29. We see that a negative vortex is always
shed off from the top and a positive one from the bottom of the cylinder. The vortex street consists of
negative and positive vortex pairs, where the positive vortex has larger size than the negative one. This
pattern is very similar to the previous two cylinders of different shapes.

zA/U: -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(a) tU∞/A = 196.5 (c) tU∞/A = 198.5

(b) tU∞/A = 197.5 (d) tU∞/A = 199.5

Figure 29. Vorticity contours for flow over a rotating triangular cylinder.
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IV.F. Flow over a Rotating Square Cylinder

In this test, we apply the solver to study flow over a rotating square cylinder. The cylinder has an edge length
of A = 1.0. It once again rotates around its center at an angular speed of ω0A/U∞ = π/2 counterclockwise.
The freestream flow again has a Mach number of Ma = 0.1, and a Reynolds number of Re = 100 (based on
cylinder edge length and freestream flow properties).

This case has a similar mesh to the previous tests. Fig. 30 shows global and local views of the mesh.
The overall domain size is 100× 100, and the cylinder locates 30 units away from the inlet. The domain is
discretized into 8,679 cells, with 533 within the rotating subdomain whose radius is 1.0. The cylinder surface
is treated as adiabatic wall, and all other boundaries are treated as characteristic farfield. The computational
time step size is ∆tU∞/A = 2.0× 10−4. Three schemes with orders of accuracy from 4 to 6 have been tested
to ensure mesh- and scheme-independent solution, and all results reported below are from the 6-th order
scheme which has been confirmed to have provided enough resolution.
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20
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Figure 30. Mesh for a rotating square cylinder (blue circle indicates sliding interface).

Fig. 31 plots the time history for CL and CD from tU∞/D = 160 to 200. As can be seen, the envelopes of
the curves seem rather periodic, and higher frequency components are reflected as wiggles on the envelopes.
Once again, this square cylinder experiences an always-negative lift and always-positive drag. The mean
values from time averaging over 178 time units are found to be C̄L = −3.207 and C̄D = 1.420. The Lissajous
curve for CL and CD is plotted in Fig. 32, and the shape indicates the presence of multiple frequency
components in the flow field.

To see the frequency distribution in the flow, we have computed the power spectrum of the unsteady
lift coefficient cL and the unsteady drag coefficient cD, the results are plotted in Fig. 33. For cL, we
see four obvious peaks at fD/U∞ = 0.14, 0.86, 1.0 and 1.14, respectively. The largest peak appears at
fD/U∞ = 0.140. The second largest peak is seen at fD/U∞ = 1.0, which is induced by the rotating motion
(it is four times the rotating frequency due to geometry symmetry of the square cylinder). For cD, we see
three more peaks at fD/U∞ = 0.28, 0.72 and 1.28 on the spectrum, but with much smaller magnitudes
than those at the other four frequencies. The larges peak for cD is seen at fD/U∞ = 1.0, and the second
largest is found at fD/U∞ = 0.14 (with a little smaller magnitude). The frequencies corresponding to the
first two largest peaks are evidently reflected in the CL and CD curves in Fig. 31. The lower frequency (i.e.,
fD/U∞ = 0.14) that corresponds to a period of TU∞/D = 7.14 shows up as the period of the envelopes
for both CL and CD. The higher frequency (i.e., fD/U∞ = 1.0) which is induced by the rotating motion
and corresponds to a period of TU∞/D = 1.0 is approximately the time interval between two adjacent small
peaks (or troughs) on the envelopes. An interesting conclusion can be drawn by comparing the spectra of all
the cylinders tested so far: as the number of edges increases, the rotating frequency becomes less dominant
in the flow field, and in the limit of infinite edges (i.e., the circular cylinder) the rotating frequency even
does not show up in the spectrum at all (see Fig. 16).
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Figure 31. Converged lift and drag coefficients for flow over a rotating square cylinder.
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Figure 32. Lissajous curve of CL and CD in 20 rotating periods (from tU∞/D = 120 to 200) for a rotating square
cylinder.
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Figure 33. Spectrum of unsteady lift and drag coefficients for flow over a rotating square cylinder.

We visualize the flow field by the vorticity contours as shown in Fig. 34. This flow field again shares
almost all the similarities of the previous ones.

zA/U: -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

(a) tU∞/A = 195.0 (c) tU∞/A = 198.0

(b) tU∞/A = 196.5 (d) tU∞/A = 199.5

Figure 34. Vorticity contours for flow over a rotating square cylinder.
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IV.G. Flow over Two Rotating Square Cylinders

The first aim of this test is to demonstrate the solver’s capability of dealing with multiple rotating objects.
The second aim is to investigate the effects of adding a tandem cylinder to the flow. The two cylinders are
separated by a distance of D = 3 (measured from center to center) and have in phase rotating motions. Each
cylinder has an edge length of A = 1.0, and rotates counterclockwise around its center at an angular speed
of ω0A/U∞ = π/2. The freestream flow again has a Mach number of Ma = 0.1, and a Reynolds number of
Re = 100 (based on cylinder edge length and freestream flow properties).

Fig. 35 shows global and local views of the mesh. The overall domain size is 100 × 100, and the first
cylinder locates 28.5 units away from the inlet. The domain is discretized into 9,353 cells, with 533 within
each rotating subdomain whose radius is 1.0. The cylinder surface is treated as adiabatic wall, and all other
boundaries are treated as characteristic farfield. The time step size for computation is ∆tU∞/A = 2.0×10−4.
Three schemes with orders of accuracy from 4 to 6 have been tested to ensure mesh- and scheme-independent
solution, and all results reported below are from the 6-th order scheme that ensures mesh and scheme
independent solutions.
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Figure 35. Mesh for two tandem rotating square cylinders (blue circles indicate sliding interfaces).

Fig. 36 plots the time history of the converged CL and CD from tU∞/D = 160 to 200 for both the
front and the rear cylinders. As can be seen, the curves seem rather periodic, but the effects of multiple
frequencies are still visible, for example on the CD curve for the rear cylinder. This is also reflected in the
Lissajous curve as shown in Fig. 37, as the Lissajous curves do not perfectly repeat themselves. Overall,
the CL and CD curves show that the magnitudes of CL and CD are both smaller for the rear cylinder than
those for the front cylinder. The time averaged values are: C̄L1 = −2.954, C̄D1 = 0.848, C̄L2 = −1.338
and C̄D2 = 0.115, where the subscript ‘1’ stands for the front cylinder and ‘2’ for the rear cylinder. It is
of interest to compare the front cylinder with the previous single square cylinder case. We see an obvious
reduction of drag (about 40.3%) and a minor drop of lift (about 7.9%) on the front cylinder when a tandem
cylinder presents. If we take the two tandem cylinders as a combined system and compare it to the previous
single square cylinder, we see an overall drag reduction of 32.3% and lift increase of 33.8%.

Fig. 38 shows the power spectra of the unsteady lift and drag coefficients. As can be seen, only one
dominant frequency of fD/U∞ = 1.0 appears on all curves, and this frequency is four times the rotating
frequency. Therefore, this flow is mostly dominated the rotating motion. This single dominant frequency
also answers why the CL and CD curves have very ‘periodic’ appearances.

Finally, we visualize the flow field by the vorticity contours and shown it in Fig. 34 for different time
instants. Very different from all previous single cylinder cases, the wake of this case is very stable and we
see no obvious vortex shedding even in the very far wake region. This pattern also answers why the lift and
drag coefficients have smaller fluctuations than the single cylinders that have vortex shedding in the flow
field.
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Figure 36. Converged lift and drag coefficients of two tandem rotating square cylinder.
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Figure 37. Lissajous curves of CL and CD in 20 rotating periods (from tU∞/D = 120 to 200) for two tandem rotating
square cylinders.
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Figure 38. Spectrum of unsteady lift and drag coefficients for two tandem rotating square cylinder.
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Figure 39. Vorticity contours for flow over two tandem rotating square cylinders.
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V. Conclusions

We have successfully developed a high-order nonuniform sliding-mesh flux reconstruction method for
simulating flows about rotating geometries. This method greatly simplifies mesh generation compared to
our previous method that requires uniform mesh on a sliding interface. Theoretically, this method could
be arbitrarily high-order accurate, and in numerical tests we have successfully achieved 2-nd to 10-th order
accuracies on both inviscid and viscous flows. We further compared the present nonconforming sliding-mesh
method to traditional conforming mesh approaches for simulating flow about rotating geometries, and very
good agreements have been obtained. Moreover, from these tests, the present method is shown to be superior
to traditional whole-domain-rotating methods, for the present method allows much better grid resolution in
the wake region and could potentially save a great amount of computational cost.

As applications, we studied flow over a series of single rotating cylinders with different shapes, and also
two tandem rotating square cylinders. In the single cylinder cases, we observed very similar vortex structures
in the flow fields in spite of different cylinder shapes. But from spectrum analysis, it is interesting to notice
that as the number of edges of a cylinder increases, the rotating frequency becomes less dominant in the flow
field. In the limit of circular cylinder (i.e., infinite number of edges), the rotating frequency even does not
show up in the spectrum at all. By adding a second rotating square cylinder to the flow (i.e., forming a two
tandem rotating cylinder system), we noticed that vortex shedding has been greatly suppressed. Meanwhile,
the drag of the front cylinder has been reduced by more than 40%, and the overall system also experiences
a drag reduction and lift enhancement. For this reason, a tandem rotating cylinder has the potential for
effective active flow control, which requires further and boarder investigation in the future.
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