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ABSTRACT

In this paper, we report a high-order three-dimensional
sliding-mesh algorithm for compressible Navier-Stokes
equations and simulations of unsteady flows around 3D
rotating objects. This 3D sliding-mesh method is an exten-
sion of our previously published 2D sliding-mesh methods
[34, 35] based on the spectral difference method. Similar
to other sliding-mesh methods, a computational domain is
split into non-overlapping subdomains, and each one may
have rotational motions relative to its neighbors, result-
ing in nonconforming sliding interfaces in between. Our
sliding-mesh method is unique because two neighboring
subdomains are coupled through curved dynamic mortar
elements along the sliding interfaces. In order to compute
common solutions and fluxes on mortars, both conserva-
tive variables and fluxes are first projected from cell faces
to mortar elements. Subsequently, they are projected back
to cell faces to ensure conservation. To demonstrate the ac-
curacy of the solver, both inviscid and viscous benchmark
flows are tested. The solver is shown capable of preserving
the high-order accuracy of the background spectral differ-
ence method. This solver is also able to handle sliding
interfaces with different orientations, is thus very flexible
for flow simulations with complex geometries. Numerical
tests are also carried out on more complex flows, such as
flow around a rotating elliptic cylinder, transitional Taylor-
Couette flow with multiple sliding interfaces, and flows
around a rotating cube. This solver can be applied to a
wide range of rotating flow problems, for example, flows
around wind turbines, marine propellers, etc.

INTRODUCTION

High-order (third and above) numerical methods are be-
coming popular in recent years in the computational fluid
dynamics (CFD) community. They are capable of pro-
ducing more accurate solutions on relatively coarse grids
at lower computational cost than low-order methods [32].
More and more applications of high-order methods to
complex engineering flow problems have also been ob-
served recently. Summaries of the recent development

and applications of high-order methods can be found in
several books [11, 31, 7, 4], and also in several review
papers [5, 30, 32].

In the high-order “family”, the spectral differ-
ence (SD) method is one of the most efficient methods
as it solves equations in differential forms directly. This
method was first introduced by Kopriva et al. [14, 12]
with the name of “staggered-grid Chebyshev multido-
main method” for the 2D compressible Euler equations
on quadrilateral grids. Kopriva [13] further applied this
method to the full compressible Navier-Stokes equations
and showed spectral accuracy on a series of test problems.

Liu et al. [20], and Wang et al. [33] later ex-
tended this method to unstructured triangular grids for
solving the wave equations and Euler equations, respec-
tively. Since this method has spectral accuracy and di-
rectly solves the equations in differential forms, the in-
volved authors named this method as the “spectral differ-
ence” method. Applications of the SD method to the
Navier-Stokes equations on unstructured triangular or
mixed-element grids were reported by several researchers
[23, 16, 15].

Van den Abeele et al. [29] studied the stability of
the SD method, and pointed out that stability and accuracy
of the SD method depends only on the locations of flux
points but not on solution points. They also found that
the previously used Chebyshev-Gauss-Lobatto flux points
make the scheme weakly instable. The stability of the
SD method for linear wave equations for all orders of
accuracy was proved by Jameson [9]. The same author
confirmed the findings of Van den Abeele et al. [29], and
reported that the SD method will be provably stable when
the interior flux points are chosen as the zeros of the
Legendre polynomials. A stable SD method for triangular
grids using the Raviart-Thomas spaces was reported by
Balan et al. [1].

The SD method is a relatively new method com-
pared to many other high-order methods, such as the DG
method, the spectral element method, etc. We have seen
more applications of the SD method to a wide range of
problems. For example, Liang et al. [19] performed large



eddy simulation (LES) of channel flows using the SD
method; Castonguay et al. [3] simulated transitional flow
over airfoils; Mohammad et al. [24] carried out LES of
flow past a cylinder; Parsani et al. [26] studied flow in-
duced noise; Lodato et al. [21] did wall modeled LES; Ou
et al. [25], etc.

Liang et al. [17] applied the SD method to the
Navier-Stokes equations on moving and deforming grids
under the arbitrary-Lagrangian-Eulerian (ALE) frame-
work. Their simulations showed excellent agreement with
previous experimental studies. However, this deforming
grid approach is limited to small grid motions, and it fails
when the grid undergoes very large rotational motions
that cause severe grid skewness. Therefore, alternative
approaches are required to study flows about objects with
arbitrary rotational motions.

Zhang and Liang [34], Zhang et al. [35] devel-
oped a novel sliding-mesh method for the SD method
for simulating two-dimensional flows. This method can
completely remove the rotation limitations on traditional
conforming ALE methods, and it is shown to be high-
order accurate and highly efficient. In the present work,
we extend this method to three-dimensional, and we fur-
ther develop a novel three-dimensional flow solver for
rotating geometries on unstructured grids.

The rest of this paper is organized as follows:
Section 2 gives the governing equations. Section 3 reviews
the SD method and presents the interface method in details.
Accuracy tests and applications are reported in Section 4.
Finally, Section 5 concludes the paper.

GOVERNING EQUATIONS

In our method, a computational domain is split into non-
overlapping subdomains, and some of them may rotate
while others are fixed. This section describes the govern-
ing equations for rotating and fixed subdomains.

The Navier-Stokes Equations on Fixed Domain

The following three-dimensional unsteady compressible
Navier-Stokes equations in conservative form are consid-
ered for fixed domains,
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where Q is the vector of conservative variables, F, G and
H are the flux vectors in each coordinate direction. These
terms have the following expressions,
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where p is fluid density, u, v and w are the velocity com-
ponents, E is the total energy per volume defined as
E=p/(y—1)+ %p(u2 +1v2 +w?), p is pressure, ¥ is
the ratio of specific heats and is set to 1.4.

As shown in Equations (3)-(5), the fluxes have
been split into inviscid and viscous parts. The inviscid
fluxes are only functions of the conservative variables and
take the following forms,
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The viscous fluxes are functions of the conservative vari-
ables as well as their gradients. Their expressions are
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where 7;; is shear stress tensor that is related to velocity
gradients as 7;; = W (u;; +uj;) + A;jur g, U is the dy-
namic viscosity, A = —2/3u based on Stokes’ hypothesis,
5; ; is the Kronecker delta, k is the thermal conductivity,
T is temperature that is related to density and pressure
through the ideal gas law p = pRT, and R is the gas con-
stant.

The Navier-Stokes Equations on Rotating Domain

On rotating domains, we use a set of simplified equa-
tions that are equivalent to the arbitrary Lagrange-Eulerian



(ALE) [8] form of Equation (1). Due to grid motion, the
inviscid fluxes are modified to take the following forms,
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where ug, v, and w, are the grid velocity components in
each coordinate direction. The viscous fluxes and all other
variables stay unaffected and have the same expressions
as those in the previous section.

For a domain rotating at angular velocity o, the
grid velocities at a point are (ug, v, Wy) = @ X r, where
r is the position vector of that point with respect to the
rotating center. For all test cases in the present study, o is
known as a priori, thus grid velocities and coordinates are
updated analytically on the rotating domains.

The Transformed Equations

As will be discussed in the next section, the physical do-
mains are discretized into hexahedral grid cells, and each
cell is mapped to a standard cubic element in the compu-
tational space. This mapping facilitates the construction
of solution and flux polynomials. As a result, we need
to solve a set of transformed equations within each stan-
dard element. Let us assume that the physical coordinates
(x,y,7z) are mapped to the computational ones (&,1,§)
through a transformation: x = x(§,1,§), y =y(&,1,0)
and z = z(§,m,&). It can be shown that Equation (1)
will take the following conservative form after coordinate
transformation,
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computational fluxes F, G and H are related to the physi-
cal ones as,
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where | _#| is determinant of the Jacobian matrix, # !
is the inverse Jacobian matrix,
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NUMERICAL METHODS

In this section, we will first give a brief description of the
SD method that is used for the spatial discretization of
Equation (15). Following that, we give the formulations
and procedures of the sliding-mesh method which is built
into the SD method to deal with rotating geometries. For
temporal discretization, an explicit five-stage fourth-order
strong stability preserving Runge-Kutta method [28] is
employed in this study.

The SD Method

In the SD method, each physical cell is mapped to a stan-
dard computational element to facilitate the construction
of solution and flux polynomials. When it comes to hex-
ahedral cell, each one is mapped to a standard cubic ele-
ment,i.e. 0<E<1,0<n <1land0<{ <1, as shown
in Figure 1. Liang, et al [15, 18] reported that using linear
cells on curved boundaries might cause oscillations on
solutions and even leads to divergence. For this reason,
32-node tricubic hexahedral cells, which can represent
curved boundaries more smoothly, have been employed
in the present study for all the test cases. The mapping is
done through the following iso-parametric mapping
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where K is the total number of nodes that define a cell
(e.g., K =20 for a triquadratic cell and K = 20 for a
tricubic cell), M; is the shape function associated with the
i-th node whose coordinates are (x;,y;,z;).

Figure 1: Mapping of physcal cell to a standard computa-
tional element: left, phsycal cell; right, standard element.



In order to construct a degree (N — 1) solution
polynomial and a degree N flux polynomial in each coor-
dinate direction, N solution points (SPs) and (N + 1) flux
points (FPs) are required in that direction. In the present
study, the SPs (denoted by X;, where s = 1,2,--- |N) are
chosen as the Chebyshev-Gauss points, and the FPs (de-
noted by X, |/, where s =0, 1,--- ,N) are set as (N — 1)
Legendre-Gauss points plus two end points (see Liang
et al. [15] for details). Figure 2 shows the SPs and FPs in
the £-n plane for a third-order scheme.
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Figure 2: Distribution of solution points (circles) and flux
points (squares) in the -7 plane for a third-order scheme.

From the SPs and FPs, Lagrange interpolation
bases can be constructed. For example, at the i-th SP and
i-th FP in the X direction (where X can be &, 1 or {), we
have the following Lagrange bases,

w0 = ] (;:i)

s=1,5#i

(20)

1 (X—Xﬂﬂ) on
=05 \Kit1/2 = Xot1/2

The conservative solution variables can be recon-
structed from tensor products of the Lagrange polynomials
from each direction as,
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Similarly, the fluxes within each standard element can be
reconstructed as,
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The above reconstructed solution and fluxes are
only element-wise continuous, but discontinuous across
cell boundaries. Therefore, common solutions and fluxes
need to be computed on cell boundaries to ensure con-
servation. A Riemann solver can be used to compute the
common inviscid fluxes. In the present implementation,
the Rusanov solver [27] has been adopted for this purpose.
The common viscous fluxes are computed from the com-
mon solutions and the common gradients. More details
on the computation of the common fluxes can be found in
a previous paper by Liang et al. [19].

The Nonconforming Interface Method

The present implementation allows two kinds of sliding
interfaces: one that is parallel to the rotating axis, and the
other that is perpendicular to the axis. These two kinds
of interfaces have cylindrical shapes and circular annulus
shapes, respectively. An example is given in Figure 3,
where the rotating axis is the z axis. The two sides of

Figure 3: Top: two subdomains with a sliding interface
parallel to the axis (inner subdomain has been scaled);
bottom: with a sliding interface perpendicular to the axis
(subdomains have been separated).

a sliding interface are meshed uniformly in the circum-
ferential direction, while meshes along the longitudinal
(of the first kind) or radial (of the second kind) direction
are matched and are not necessarily uniform. The result-
ing cell faces and mortars are either arch-shaped (for the



first kind) or fan-shaped (for the second kind). Figure 4
shows a 2D schematic of the distributions of mortars for
the first-kind sliding interface. It can be seen that, at each
time instant, a cell face is connected to two mortars and a
mortar is associated with one left and one right cell face.
This connectivity needs to be updated at every stage of a
time-marching scheme.

Figure 4: A 2D schematic of distribution of mortars
(hatched) for the first-kind sliding interface.

Figure 5 is a schematic of the mapping of an
arch-shaped and a fan-shaped cell face from the physical
space to a square face (e.g., 0 < £,n < 1) in the compu-
tational space, where Q denotes cell face and = denotes
mortar. Meanwhile, a mortar is mapped to a square el-
ement (i.e., 0 < &’.n’ < 1) in the mortar space. This is
achieved via 2D isoparametric mapping. Let’s assume

—

Q I .
Q
Q Q |
Figure 5: Mapping of curved cell face and mortars to
planner ones: top, curved face and mortars in the physical

space; bottom, planner face and mortars in the computa-
tional space.

that all circular edges are mapped to straight ones in the
& direction (for cell faces) or &’ direction (for mortars),
while straight edges are mapped to the 1 (for cell faces) or

7N’ (for mortars) direction. Then, the computational space
and mortar space are related as

E=o(1)+s(1)&,
n=n,

(26)
27)

where o(t) is the offset of a mortar with respect to a cell
face at time ¢, and s(¢) is the scaling. For example, in
Figure 5(a), we have 01 =0, 51 = LEI/LQ for ¥, and
00 =LZ /L2, 5, = L*2 /L for E,, where L represents the
physical length of a cell face or a mortar in the circumfer-
ential direction.

According to Equation (22), the solution on Q
can be represented as,
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where Q,%- represents the discrete solution at the (i, j)-
th SP on Q, h; and h; are the Lagrange bases defined
in Equation (20). If we define the same set of SPs on
0< & <1,0< 1 <1 for each mortar, then solution on
each mortar can be reconstructed similarly,
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where Ql-Ej is the solution at the (7, j)-th SP on a mortar Z.

The procedure for computing Q,: ; is demonstrated
in Figure 6(a). For simplicity, we only show the process
on the left side of mortar E. To get the solutions, we
require that,

[ @)~ Q& M)l g () ' =0,
a,f=12..N. (30

Substituting Equations (26)-(29) into the above equation
and evaluating it at each SP on & will give a system of
linear equations. The solution of this system when written
in matrix form is

QE,L — PQ*}EQQ — Mfls.Q%EQQ’ (31)

where P?~% = M~189% is the projection matrix from
Q to Z. The matrices M and S~ have the following
expressions,
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where o and s are the offset and scaling of & with respect to
Q. It is important to note that o and s are time-dependent.

The right solution vector Q= can be computed
in the same way. With both left and right solutions on a
mortar, the Rusanov solver [27] is employed to compute
the common inviscid flux FE . This common flux is then

mny*
transformed to the computational flux as FW according

to Equation (16).
- <
é
Q Q
(a) (b)

Figure 6: Projection between cell face and mortar: (a)
from left face to left side of mortar, (b) from two mortars
back to the associated left face.

As shown in Flgure 6(b), to project the common
inviscid fluxes F;al» and Fl“nzv back to a cell face Q, we
require that,

/17 /5 002 (Fi2,(E,m) —
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where Ffﬁv(é ,M) is the inviscid flux polynomial on face
Q. Solution of the above equation when written in matrix
form is
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where the matrix M is identical to that in Equation (31),
and matrices S$*1 7 and S*27 are simply transposes of
S9E1 and S@%2, respectively.

For the computation of common viscous fluxes,
we first compute the common solution on each mortar as
the average of the left and the right solutions,

z_1 .z =R
Q% =5 (Q*" +Q%"). (36)
This common solution is then projected back to cell faces
in the same procedure as for the inviscid flux in Equation
(35). After that, solution gradients and viscous fluxes are

updated on both side of the interfaces. The viscous fluxes

FffY on cell faces are projected to mortars in the same way

as Equation (31). The common viscous flux sz on a

s

mortar is the average of left and right viscous fluxes,
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The final step is to project F;H back to cell faces, which is
identical to the process in Equation (35).

Since uniform mesh is used for cell faces on the
sliding interface, the S matrix only needs to be computed
for the first two mortars, and can be reused by other corre-
sponding mortars. At the same time since the M matrix
is time independent, it can be precomputed before the
actual calculation. To compute the integrals in Equations
(32) and (33), one can use any numerical or analytical
integration techniques, for example, the Clenshaw-Curtis
quadrature method [2].

NUMERICAL TESTS

In this section we test the accuracy of the solver on both
inviscid and viscous flows, and then apply this method
to study flow around a rotating elliptic cylinder and flow
over a stream-wise rotating cube.

Euler Vortex Flow

Euler vortex flow is widely used for accuracy tests of in-

viscid flow solvers, one of such examples can be found in
[6]. In Euler vortex flow problem, an isentropic vortex is
superimposed to and convected by a uniform background
flow. The flow field of a two-dimensional Euler vortex
flow in an infinite domain at time ¢ can be described as,
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where U, Peo, P, Mo are the mean flow speed, density,
pressure and Mach number respectively, 6 is the direction
of the mean flow (i.e. the direction along which the vor-
tex is convected), € and r. can be interpreted as vortex
strength and size. The relative coordinates (x,,y,) are
defined as,

(42)
(43)

Xp =X —Xxo— Ut,
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where it = U, cos 0, V = U sin 0 are the x and y compo-

nents of the mean velocity, (xo,yo) is the initial position
of the vortex.



In the present study, the uniform mean flow is
chosen as (Uw, Poo, Poo) = (1,1, 1) with a Mach number of

M., = 0.3. The flow direction is set to 8 = arctan(1/2).

A vortex with parameters: € = 1, r, = 1, is superimposed

to the mean flow. The domain size is 0 < x,y < 10 (i.e.

L = 10), and the vortex is initially located at the domain
center (xo,y0) = (5,5). Periodic boundary conditions are
applied in all three coordinate directions.

Three meshes with 172, 1376 and 11,008 cells
are used for accuracy tests. Figure 7 shows the overall

mesh with 1376 cells and the mesh on its sliding interface.

The overall mesh has two parts: an inner part with a radius
of 2 which can rotate; a fixed outer part which takes the
rest of the computational domain. For all three cases, the
inner part is set to rotate at an angular speed of @ = 1.0.
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Figure 7: Mesh with 1376 cells at a time instant for Euler
vortex flow simulation: top, volume mesh; bottom, some
surface mesh (blue color indicates sliding interface).

Figure 8 shows the density contours at ¢ = 2
from the fourth-order scheme. At this time instant, the
vortex is traveled to a position with its center right on
the sliding interface. As we can see, the nonconforming
sliding interface does not cause any alteration to the shape

of the vortex.

O
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Figure 8: Contours of density at time instant # = 2 for the
Euler vortex flow.

Furthermore, Table 1 and Table 2 reports the
spatial accuracy of the scheme, where the L and L, errors
are computed from density at t+ = 2 when vortex center
is traveled right onto the sliding interface. From the two
tables we see that the sliding-mesh method gives good
orders of accuracy.

Table 1: Errors and orders of accuracy of the 3’ order
scheme on the Euler vortex flow.

cells L1 error order L2 error order
172 1.57E-3 - 1.68E-3 -
1376 1.87E-4 3.07 2.34E-4 2.85
11008 2.72E-5 293 3.71E-5 2.75

Table 2: Errors and orders of accuracy of the 47 order
scheme on the Euler vortex flow.

cells L1 error order L2 error order
172 5.00E-4 - 4.84E-4 -
1376 2.31E-5 4.44 2.72E-5 4.15
11008 8.98E-7 4.56 1.09E-6 4.39




Laminar Taylor-Couette Flows

This test includes two cases, one with a sliding interface
parallel to the z direction and the other with a sliding
interface perpendicular to the z axis. Periodic boundary
condition is applied in the spanwise direction. The exact
solution for the circumferential velocity has the following
relation to radius r,

Fo/T—1/Fo

= o —4—L2
Yo lrlro/ri_ri/ro

(44)

Figure 9 shows two views of a mesh whose slid-
ing interface is parallel to the z axis. The inner boundary
has a radius of r; = 1, and the outer one has radius of
r, = 2. The sliding interface locates at r = 1.5. The inner
subdomain rotates at an angular speed of 1.0, while the
outer subdomain is fixed.

T T T

T
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Figure 9: A mesh with one parallel sliding interface for
the Taylor-Couette flow simulation.

The steady state density contours from the third-
order scheme on the coarsest mesh are shown Figure 10.
We see that the contours are a series of concentric circles,
which is consistent with our expectation. Again, The
sliding interface does not cause any contamination to the
solutions.

Figure 10: Density contours of the Taylor-Couette flow
with one parallel sliding interface.

The errors are computed based on the x velocity
component, and the results together with the orders of
accuracy are shown in Table 3 and Table 4. It is obvious

Table 3: Accuracy of the third-order scheme on the
Taylor-Couette flow with one parallel sliding interface.

cells L1error order L2 error  order
192 1.87E-3 - 1.43E-3 -
1536 2.17E-4  3.10 1.86E-4 294
12288 2.00E-5 3.27 2.32E-5 297

Table 4: Accuracy of the fourth-order scheme on the
Taylor-Couette flow with one parallel sliding interface.

cells L1 error order L2 error  order
192 1.87E-4 - 1.23E-5 -
1536 1.25E-5 3.90 9.01E-7  3.77
12288 9.08E-7 3.85 6.86E-8  3.75

that the solver gives good accuracies on this viscous flow
test with a parallel sliding interface.

Figure 11 shows two views of the coarsest mesh
for the second case. The domain has been split into
two subdomains at the mid-spanwise location. The back-
ground subdomain is fixed, on which the foreground sub-
domain slides. The velocities on the outer boundaries are
set to zero. Velocity on the background inner boundary is
prescribed, and on the foreground one is computed from
no-slip boundary condition.

Figure 11: A mesh with one perpendicular sliding inter-
face for the simulation of Taylor-Couette flow.

The steady state density contours are plotted in
Figure 12, which are again from a third-order scheme on
the coarsest mesh. It is obvious that the solver gives cor-
rect solution both inside the domain and on all boundaries
including the sliding interfaces.

The errors and orders of accuracy are reported
in Tables 5 and 6. Again, the solver gives the desired
orders of accuracy for this case with a sliding interface
perpendicular to the rotating axis.



Figure 12: Density contours of the Taylor-Couette flow
with one perpendicular sliding interface.

Table 5: Accuracy of the third-order scheme on the
Taylor-Couette flow with one perpendicular sliding in-
terface.

cells L1error order L2 error  order
96 5.73E-4 - 8.31E-4 -

768 736E-5 296 1.09E-4 293
6144 8.35E-6 3.10 1.29E-5 3.01

Table 6: Accuracy of the fourth-order scheme on the
Taylor-Couette flow with one perpendicular sliding inter-
face.

cells L1error order L2 error  order
96 7.04E-5 - 9.38E-5 -

768 478E-6  3.88 6.64E-6  3.77
6144 2.82E-7 3.85 424E-7  3.79

Figure 13: Schematic of the mesh for a transitional
Taylor-Couette flow simulation with three sliding inter-
faces.

A Transitional Taylor-Couette Flow

Figure 13 shows a schematic of the mesh for this case. The
overall computational domain is defined as 1 < r <2 and
0 <z £6. Periodic boundary condition is applied along
the z direction. Isothermal wall boundary conditions are
applied on the inner and the outer boundaries. The inner
subdomain rotates at an angular speed of 1, while the same
angular speed is prescribed on the inner boundaries of the
outer subdomain. The resulting Reynolds number is 2,000.
The aim of this test is to see if flow transition from laminar
to turbulent can be well captured when nonconforming
sliding interfaces present.

Figure 14 shows the development of the flow
field by visualizing isosurfaces of the Q-criterion [10].
The flow field is initialized as a uniform flow. It is seen
that at this high Reynolds number, the flow gradually lose
its stability due to the weak viscous effects compared to
the low Reynolds number flows. Three dimensionality be-
comes obvious after about four rotating periods as shown
in Figure 14(a). More and more 3D flow structures appear
in Figures 14(b) and (c) as the rotation continues, however,
those structures are still very coherent and well organized.
The development to turbulent flow is evident in Figures
14(d) to (f), in which large vortex structures finally break
down into small flow structures. This case clearly shows
that the solver can resolve flow structures very well for
this transitional flow even on a very coarse grid.

Figure 14: Isosurfaces of the Q-criterion Q. = 1 for a
transitional Taylor-Couette flow at Re = 2,000 with three
sliding interfaces.



Flow over a Rotating Elliptic Cylinder

To further verify the solver, we simulate flow over an el-
liptic cylinder in this section. Maruoka [22] and Zhang
et al. [36] studied incompressible flow over a rotating
elliptic cylinder using Finite Element and Finite Volume
method, respectively. Both studies use Chimera grids for
communication between foreground rotating mesh and
background stationary mesh. To compare with the incom-
pressible flow results, the freestream Mach number is set
to Ma = 0.05 to keep compressibility effects negligible.

The major and minor axes are 1.0 and 0.5 for
the elliptic cylinder. Initially, the major axis is parallel
to freestream. The cylinder rotates counterclockwise at
an angular speed of @ = 0.57. The Reynolds number
based on freestream velocity and major axis length is
200. Figure 15 shows a schematic of the computational
domain. The top and bottom boundaries are set as far-
field boundaries. Dirichlet boundary condition is used for
the inlet and fixed pressure is used at the outlet boundary.
Finally, isothermal and no-slip conditions are employed
for the cylinder wall.

sliding interface

100.0

/

outlet

} 30.0 | 70.0 |

Figure 15: Schematic of the computational domain for
flow over a rotating elliptic cylinder (not to scale).

The inner rotating domain has a radius of 1.5
and is meshed with 3072 cells. The rest of the domain
is stationary and has 19496 cells in all. Mesh refinement
are performed around the leading and trailing edges, and
in the wake region. Figure 16 shows part of the mesh
around the cylinder. The first layer of the mesh around the
airfoil has a thickness of about 0.005, and the maximum
aspect ratio is around 2. The non-dimensional time step
size AtU.. /L for the simulation is set to 1.0 x 10~*, where
L is the major axis and U., is the free-stream velocity.

Both third and fourth-order schemes were tested
for this flow and no visible difference was observed be-
tween two solutions. We only present results from the
fourth-order scheme. As was noticed by Maruoka [22]
and Zhang et al. [36], the fully developed flow takes a
periodic pattern as the cylinder rotates. The lift and drag
coefficients in one period are shown in Figure 17. It is

Figure 16: A local view of surface mesh around the ellip-
tic cylinder (blue color indicates sliding interface, yellow
color indicates cylinder surface).

seen that the present result agrees very well with the pre-
vious results. Figure 18 shows the contour of vorticity
component in the z direction in the middle plane at a time
instant. We see that at the given Reynolds number, the
flow is laminar and a vortex street with vortices rotating
at alternative directions formed behind the cylinder.

r Present
4 O Maruoka (2003)
v Zhang et al. (2008)

wt/m

Figure 17: Lift and drag coefficients for flow over an
elliptic cylinder.

Figure 18: Streamlines and vorticity contours (blue
means negative value, red means positive) for flow over a
counterclockwise rotating elliptic cylinder (big circle is
sliding interface).



Flows around a Rotating Cube

This section gives some preliminary results of flows over
a stream-wise rotating cube. Figure 19 shows part of the
mesh used for this simulation. The cube has a length of
L =1 in each direction, and locates 10L away from the
inlet, 30L from the outlet. The computational domain
has a size of 40L x 30L x 8L, and is decomposed into
two parts: one that inside the blue surface and rotates at
angular speed of @ = 0.57, the other that takes the rest
of the domain and stays stationary. The inner domain has
a total number of 17982 mesh cells, and the outer has
29295. Mesh has been refined around the cube as well as
in the near weak region. Dirichlet boundary condition is

applied at the inlet, where the Mach number is Ma = 0.2.

Pressure boundary condition is used at the outlet. The
top and bottom boundaries are set to have symmetric
boundary conditions. Periodic boundary condition is used
in the spanwise direction. Two Reynolds number based
on the freestream velocity and cube length, Re = 100 and
1,000, are tested.

Figure 19: Mesh for flow over a cube: top, some surface
mesh of the domain (blue color indicates sliding interface,
yellow color indicates cube surface); bottom, mesh on the
cube surface.

Figure 20 shows the Q criterion [10] colored by
pressure at several time instants for Re = 100. It can
be seen that as the cube rotates, vortex structures will
appear around each corner of the cube, and form a spiral
pattern. It is also very interesting to notice that a vortex

core shows up slightly downstream of the cube with its
size and location almost irrelevant to the rotation. The
pressure distribution indicates that the front surface of the
cube experiences high pressure force, which is consistent
with the fact the flow goes to stagnation within that area.

t=244

t=246

Figure 20: Isosurface of the Q criterion (colored by pres-
sure) for flow over a rotating cube at Re = 100.

Figures 21 shows the flow fields for Re = 1,000.
It is obvious that the developments of flow structures
are quite different from the previous case. In the early
rotating period (f < 6), it is seen that hair-pin type vortices
are generated from the corners of the cube. These vortices
are then convected downstream to form a few rows of well

Q=1 Qo =20
P P
W
L
— 1 099
H 097
& R

| 0983
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Figure 21: Isosurfaces of the Q-criterion (colored by
pressure) for flow over a rotating cube at Re = 1,000.

organized patterns. However, in the later rotating periods



(t > 18), those structures are not able to sustain themselves
due to insufficient viscous forces, and they finally break
down into small turbulent structures. The converged flow
(t > 18) shows that the most coherent structures are still
the spiral type vortices similar to those that have been
observed in the previous case. However, due to smaller
viscous effects, these structures show thinner and longer
shapes than their counterparts in the low Reynolds number
case.

CONCLUSIONS

We have successfully developed a high-order accurate
three-dimensional unsteady flow solver using a novel
sliding-mesh mesh method and the spectral difference
method. This solver has been shown capable of preserving
the high-order accuracy of the spectral difference method
on nonconforming sliding grids. This 3D solver is also
able to handle multiple sliding interfaces with different
orientations. Future work of our research includes paral-
lelization of the 3D solver and validation on transitional
and turbulent flows.
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