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ABSTRACT
In this paper, we present a novel sliding-mesh interface ap-

proach to the spectral difference (SD) method on coupled rotat-
ing and deforming/stationary domains. This approach is an ex-
tension of the previously reported method for coupled rotating
and stationary domains for the flux reconstruction (FR) method
[1]. The use of sliding-mesh interfaces not only allows us to
study flows around freely rotating bodies but can also dramati-
cally reduce grid twists on deforming domains with large-angle
rotations. We test the accuracy of the solver on an inviscid flow,
and it is found that the solver is high-order accurate on coupled
dynamic grids with sliding-mesh interface. Simulation of viscous
flow over a plunging and pitching airfoil is also carried out to
verify the solver, it is seen that the solver is accurate and is very
efficient in terms of computational cost. Finally, we apply the
solver to study a two-dimensional vertical axis wind turbine at
different Reynolds numbers. It is found that the turbine is effi-
cient and extracts energy from the flows at high Reynolds num-
bers. This solver can also be applied to other problems, such
as the aerodynamics of rotorcrafts, oscillating wing wind power
generators.

INTRODUCTION
During the last two decades, high-order (third and above)

numerical methods have received wider range of interests in re-
search communities, especially in the computational fluid dy-
namics (CFD) community. High-order methods are capable of

producing more accurate solutions on relatively coarse grids at
lower computational cost than low-order methods [2]. High-
order methods are also being applied to deal with very challeng-
ing fluid flow problems with complex geometries. Summaries of
recent development and applications of high-order methods can
be found in several books [3, 4, 5, 6] and review papers [2, 7, 8].

Among the numerous high-order methods, the discontinu-
ous Galerkin (DG) method gained enormous popularity in the
past decade for solving conservation laws on unstructured grid.
The idea of the DG method was first introduced by Reed and
Hill [9] to solve neutron transport equations. Cockburn, Shu,
Bassi, Rebay and others [6, 10, 11, 12, 13] developed the DG
method extensively and applied it to fluid dynamics problems.
However, the computational complexity of the DG method in-
creases rapidly as the order of accuracy increases [14].

Instead of solving the equations in integral form as in the
DG method, Kopriva [15] proposed a staggered-grid Chebyshev
multidomain method, which solves the differential form of the
conservation laws. Liu et al. [16] and Wang et al. [17] ex-
tended this method to unstructured triangular and quadrilateral
grids and named the more general method as spectral difference
(SD) method. For SD method on quadrilateral grids, solutions
and fluxes in each coordinate direction are represented by 1D
Lagrange polynomials, whereas the multi-dimensional solutions
within each cell are reconstructed by tensor products of the La-
grange polynomials. The 1D representation reduces the compu-
tational cost dramatically, and the tensor-product reconstruction
makes the SD method high-order accurate.
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We have seen more and more applications of the SD method
to realistic flow simulations. For example, for large eddy simula-
tion on fixed grids [18,19,20,21]. The SD method is also partic-
ularly suitable for simulating vortex-dominated flows on moving
and deforming grids [22, 23]. Liang, et al. [24] extended the
SD method for simulating 2D unsteady flow around plunging or
pitching airfoils. However, when the grid undergoes very large
rotational motion, the deforming-mesh approach fails since the
grid is severely twisted resulting in cells with negative volumes.

In this paper, we present a newly developed high-order ac-
curate flow solver for coupled rotating and deforming/stationary
domains using spectral difference (SD) method and a novel
sliding-mesh interface approach. This sliding-mesh interface ap-
proach is an extension of the previously reported method for cou-
pled rotating and stationary domains for the flux reconstruction
(FR) method [1]. The use of sliding-mesh interfaces allows us
to study flows around freely rotating bodies. Furthermore, it can
dramatically reduce twists on the grids for deforming domain
with large-angle rotations.

This paper is organized as follows. We first give the govern-
ing equations and the transformed equations in the computational
space. Subsequently, a brief review of the SD method and a de-
scription of the sliding-mesh interface approach are presented.
After that, accuracy and verification tests of the solver are car-
ried out, and a study of a vertical axis wind turbine is performed.
Finally, we conclude the paper in the last section.

GOVERNING EQUATIONS
In this section, we give the governing equations in both the

physical space and the computational space.

Compressible Navier-Stokes Equations
We consider the 2D unsteady compressible Navier-Stokes

equations in conservative form,

∂Q
∂ t

+
∂F
∂x

+
∂G
∂y

= 0, (1)

where Q is the vector of conservative variables, and F and G are
the x and y fluxes with the following expressions,

Q = [ρ ρu ρv E]T , (2)
F = Finv(Q)+Fvis(Q,∇Q), (3)
G = Ginv(Q)+Gvis(Q,∇Q), (4)

where ρ is fluid density, u and v are x and y velocities, E is the
total energy per volume defined as E = p/(γ−1)+ 1

2 ρ(u2 +v2),
p is pressure, γ is the ratio of specific heats and is set to 1.4.

As shown in Equations (3) and (4), the fluxes have been di-
vided into inviscid and viscous parts. The inviscid fluxes are only
functions of conservative variables,

Finv =


ρu

ρu2 + p
ρuv

(E + p)u

 , Ginv =


ρv
ρuv

ρv2 + p
(E + p)v

 . (5)

The viscous fluxes are functions of the conservative vari-
ables and their gradients. They have the following expressions,

Fvis =−


0

τxx
τyx

uτxx + vτyx +kTx

 , (6)

Gvis =−


0

τxy
τyy

uτxy + vτyy +kTy

 , (7)

where τi j is the shear stress tensor which is related to velocity
gradients as τi j = µ(ui, j +u j,i)+λδi juk,k, and µ is the dynamic
viscosity, λ = −2/3µ based on Stokes’ hypothesis, δi j is the
Kronecker delta, k is thermal conductivity, T is temperature that
is related to density and pressure through the ideal gas law p =
ρRT , where R is the gas constant.

The Transformed Equations
As will be discussed in the next section, we map each

quadrilateral cell from the physical domain to a standard square
element in the computational domain. This mapping facilitates
the construction of solution and flux polynomials. As a result,
we only need to solve a set of transformed equations within each
standard element. Let us assume that the physical time and co-
ordinates (t,x,y) are mapped to the computational ones (τ,ξ ,η)
through a transformation: t = τ , x = x(τ,ξ ,η), y = y(τ,ξ ,η). It
can be shown that Equation (1) will take the following conserva-
tive form after coordinates transformation,

∂ Q̃
∂τ

+
∂ F̃
∂ξ

+
∂ G̃
∂η

= 0. (8)

The computational variable and fluxes are related to the physical
ones as  Q̃

F̃
G̃

= |J |J −1

Q
F
G

 , (9)
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where |J | is the determinant of the transformation Jacobian
matrix, and J −1 is the inverse transformation Jacobian matrix.
They have the following definitions,

J =
∂ (t,x,y)

∂ (τ,ξ ,η)
=

 tτ tξ tη
xτ xξ xη

yτ yξ yη

 , (10)

J −1 =
∂ (τ,ξ ,η)

∂ (t,x,y)
=

 τt τx τy
ξt ξx ξy
ηt ηx ηy

 . (11)

Considering the fact that J J −1 = I, J −1 can be ex-
pressed as the adjugate matrix of J over the determinant,

J −1 =
1
|J |S , (12)

where S is the adjugate matrix of J . Since the temporal
transformation is independent of spatial coordinates, it results in
tτ = 1, tξ = 0, tη = 0. Substitute these values into J and after
some algebra the following expression can be obtained for S ,

S =

 |J | 0 0
A yη −xη

B −yξ xξ

 , (13)

with |J | = xξ yη − yξ xη , A = −xτ yη + yτ xη and B = xτ yξ −
yτ xξ . In the above S matrix, xτ and yτ can be interpreted as the
grid velocities. For all the rotating- and deforming-mesh sim-
ulations in this study, the grid coordinates (x,y) as well as the
velocities (xτ ,yτ) are prescribed analytically.

For deforming grids, besides the above equations, the fol-
lowing Geometric Conservation Law (GCL) [25] has to be con-
sidered to ensure global conservation,



∂

∂ξ
(|J |ξx)+

∂

∂η
(|J |ηx) = 0

∂

∂ξ
(|J |ξy)+

∂

∂η
(|J |ηy) = 0 (14)

∂ |J |
∂τ

+
∂

∂ξ
(|J |ξt)+

∂

∂η
(|J |ηt) = 0.

Since grid motions are given analytically in this study, the first
two GCL equations are satisfied automatically. From the third
equation, ∂ |J |/∂τ is computed and added to Equation (8) as a
source term.

NUMERICAL METHODS
In this section, we first give a brief review of the SD method.

Subsequently, we describe a newly formulated sliding-mesh in-
terface technique that is built on the SD formulation. For tempo-
ral discretization, an explicit strong stability preserving Runge-
Kutta method [26] is used for all computations throughout this
paper.

The SD Method
For SD method on quadrilateral grids, we first transform

each cell from the physical domain to a standard square element
(0≤ ξ ≤ 1,0≤ η ≤ 1) in the computational domain. The trans-
formation can be done through iso-parametric mapping. As was
reported in [27,28], using linear cell which is defined by 4 nodes
is not good enough for problems involving curved boundaries.
High order cubic cell with 12 nodes are used along the curved
boundaries to ensure stability and accuracy in the present study.

After the mapping, solution points (SPs) and flux points
(FPs) are defined on each standard element as shown in Figure 1
for a third order scheme. For an N-th order SD method, N SPs
are required along each coordinate direction to construct degree
(N−1) solution polynomials. Due to the existence of first order
spatial derivatives on fluxes in Equation (8), (N+1) FPs must be
employed in each direction to construct degree N polynomials.
In the current implementation, the SPs: Xs, where s = 1,2, ...,N,
are chosen as N Chebyshev-Gauss points. The FPs: Xs+1/2,
where s = 0,1,2, ...N, are chosen as (N − 1) Legendre-Gauss
points plus two end points to align in a staggered fashion with
respect to the SPs (see [27, 28] for more details).

0 ξ 1

1

η

FIGURE 1. Schematic of distribution of solution points (circles) and
flux points (squares) for a third order SD scheme.

To construct solution and flux polynomials, the following
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Lagrange bases at the SPs and FPs are used,

hi(X) =
N

∏
s=1,s 6=i

(
X−Xs

Xi−Xs

)
, (15)

li+1/2(X) =
N

∏
s=0,s 6=i

(
X−Xs+1/2

Xi+1/2−Xs+1/2

)
. (16)

The solution and fluxes within each element are simply tensor
products of the Lagrange bases:

Q(ξ ,η) =
N

∑
j=1

N

∑
i=1

Q̃i, j

|Ji, j|
hi(ξ ) ·h j(η), (17)

F̃(ξ ,η) =
N

∑
j=0

N

∑
i=0

F̃i+1/2, jli+1/2(ξ ) ·h j(η), (18)

G̃(ξ ,η) =
N

∑
j=0

N

∑
i=0

G̃i, j+1/2hi(ξ ) · l j+1/2(η). (19)

The above reconstructed solution and fluxes are only
element-wise continuous, but discontinuous across cell inter-
faces. For inviscid fluxes, a Riemann solver is employed to com-
pute common flux at cell interfaces to ensure conservation and
stability. In the current implementation, the Rusanov solver [29]
has been used. For viscous fluxes on cell interfaces, we first com-
pute the common values for both conservative variables and their
gradients by averaging values from the left and right sides of each
cell face, and common viscous fluxes are then computed from the
common variables and gradients, details can be found in a previ-
ous paper by Liang, et al. [27].

The Sliding-mesh Approach
Sliding interfaces are formed between two domains with dif-

ferent motions. The simplest situation involves only one rotating
mesh and one stationary mesh as shown in Figure 2. The inner
mesh can rotate while the outer is fixed, or vice versa. Commu-
nication between the stationary and rotating meshes are realized
through “mortars”. To make the explanation intuitive, we have
scaled the inner mesh in order to place mortars in between two
coupled meshes.

The mortars are arranged in a counterclockwise order. We
refer the inner mesh as left (L) and the outer mesh as right (R)
with respect to a mortar. To facilitate code implementation and
reduce computational cost, cell faces on both sides of the sliding
interface have been meshed uniformly. A closer look at Figure
2 reveals how mortars and cell faces on the sliding interface are
connected: at each time instant, a cell face is connected to two
mortars, and each mortar is associated with one left cell face and

FIGURE 2. Schematic of distribution of mortars (hatched) between a
rotating mesh and a stationary mesh.

one right cell face. This face and mortar connectivity needs to be
updated at every stage of the Runge-Kutta time stepping method.

Figure 3 shows a cell face Ω and its two mortars Ξ1 and
Ξ2. Each curved mortar is mapped to a straight edge 0 ≤ z ≤
1 through 1D iso-parametric mapping. Face Ω is mapped to a
straight edge 0 ≤ ξ ≤ 1 when the associated cell is mapped to
a standard square element, thus no extra mapping is required. ξ

and z are related by

ξ = o(t)+ s(t)z, (20)

where o(t) is the offset of the mortar relative to the bottom node
of Ω at time t, and s(t) is the relative scaling. For the example
shown in Figure 3, we have o1 = 0 and s1 = LΞ1/LΩ for Ξ1,
o2 = LΞ1/LΩ and s2 = LΞ2/LΩ for Ξ2, where L means physical
length of face and mortars.

Ω

Ξ1

Ξ2

Ω

Ξ2

Ξ1

FIGURE 3. Mapping of curved cell face and mortars to straight ones:
left, curved face and mortars in physical domain; right, straight face and
mortars in computational domain.

According to Equation (17), solutions on Ω can be repre-
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sented as,

QΩ =
N

∑
i=1

QΩ
i hi(ξ ), (21)

where QΩ
i represents solution at the i-th SP on Ω, hi is the La-

grange basis defined in Equation (15). If we define the same set
of SPs on 0≤ z≤ 1 for each mortar, then solutions on each mor-
tar can be reconstructed similarly as

QΞ =
N

∑
i=1

QΞ
i hi(z), (22)

where QΞ
i is the solution at the i-th SP on a mortar Ξ.

The procedure for computing QΞ
i is demonstrated in Figure

4(a). For simplicity, we only show the process on the left side of
mortar Ξ. To get the solutions, we require that,

∫ 1

0
(QΞ,L(z)−QΩ(ξ ))h j(z)dz = 0, j = 1,2, ...,N. (23)

It was shown in [30] that the above requirement is equivalent to
an unweighted L2 projection. Substitute Equations (20)-(22) into
the above equation and evaluate it at each SP on Ξ will give a
system of linear equations. The solution of this system when
written in matrix form is,

QΞ,L = PΩ→ΞQΩ = M−1SΩ→ΞQΩ, (24)

where PΩ→Ξ is the projection matrix from Ω to Ξ, the matrices
M and SΩ→Ξ have the following elements,

Mi, j =
∫ 1

0
hi(z)h j(z)dz, i, j = 1,2, ...,N, (25)

SΩ→Ξ
i, j =

∫ 1

0
hi(o+ sz)h j(z)dz, i, j = 1,2, ...,N, (26)

where o and s are the offset and scaling of Ξ with respect to Ω.
It is important to note that o and s are time-dependent for the
sliding-mesh interface method.

The right solution vector QΞ,R can be computed in the same
way. Having both left and right solutions on a mortar, the Ru-
sanov solver is employed to compute common inviscid flux FΞ

inv.
This flux is then transformed to the computational flux as F̃Ξ

inv
according to Equation (9).

Ω
Ξ

(a)

Ω

Ξ2

Ξ1

(b)

FIGURE 4. Projection between face and mortar: (a) from left face to
left side of mortar, (b) from two mortars back to the associated left face.

As shown in Figure 4(b), to project the common inviscid
fluxes F̃Ξ1

inv and F̃Ξ2
inv back to face Ω, we require that,

∫ o2

0
(F̃Ω

inv(ξ )− F̃Ξ1
inv(z))h j(ξ )dξ+∫ 1

o2

(F̃Ω
inv(ξ )− F̃Ξ2

inv(z))h j(ξ )dξ = 0, j = 1,2, ...,N, (27)

where F̃Ω
inv(ξ ) is the inviscid flux polynomial on face Ω. Solution

of the above equation when written in matrix form is,

F̃Ω
inv = PΞ1→ΩF̃Ξ1

inv +PΞ2→ΩF̃Ξ2
inv

= s1M−1SΞ1→ΩF̃Ξ1
inv + s2M−1SΞ2→ΩF̃Ξ2

inv, (28)

where the matrix M is identical to that in Equation (24), and
matrices SΞ1→Ω and SΞ2→Ω are simply transposes of SΩ→Ξ1 and
SΩ→Ξ2 , respectively.

For the computation of common viscous fluxes, we first
compute the common solution on each mortar as the average of
the left and right solutions,

QΞ =
1
2
(QΞ,L +QΞ,R). (29)

This common solution is then projected back to cell faces in the
same procedure as for the inviscid flux in Equation (28). After
that, solution gradients and viscous fluxes are updated on both
side of the interfaces. The viscous fluxes F̃Ω

vis on cell faces are
projected to mortars in the same way as Equation (24). The com-
mon viscous flux F̃Ξ

vis on a mortar is the average of left and right
viscous fluxes,

F̃Ξ
vis =

1
2
(F̃Ξ,L

vis + F̃Ξ,R
vis ). (30)

The final step is to project F̃Ξ
vis back to faces, which is identical

to the process in Equation (28).
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Since uniform mesh is used for cell faces on the sliding in-
terface, the S matrix only needs to be computed for the first two
mortars, and can be reused by other corresponding mortars. At
the same time since the M matrix is time independent, it can
be precomputed before the actual calculation. To compute the
integrals in Equations (25) and (26), one can use the Clenshaw-
Curtis quadrature method as was used in [30]. In this study, the
integrand is casted into a general form as product of 2(N−1) first
degree polynomials, and we implement a recursive algorithm to
compute the integrals analytically. This integration approach re-
quires the least number of operations, and is much more efficient
than the Clenshaw-Curtis quadrature method.

NUMERICAL VERIFICATIONS
In this section we test the accuracy of the solver on an in-

viscid flows, and then verify it on a viscous flow. A five-stage
forth order Runge-Kutta method for time stepping [26] is used
for all test cases. For accuracy tests, various time step sizes were
used in each case to make sure that the errors are time step size
independent and are dominated by spacial discretization errors.

Euler Vortex Flow on Dynamic Grid
We first test the solver on an inviscid flow. For inviscid

flow test, Euler vortex problem is an ideal choice as it has been
used by many researchers, one of such an example can be found
in [31]. In Euler vortex problem, an isentropic vortex is super-
imposed to an uniform mean flow and convected by the mean
flow. The flow field in an infinite domain at a time instant t can
be analytically expressed as,

u =U∞

{
cosθ − εyr

rc
exp
(

1− x2
r − y2

r

2r2
c

)}
(31)

v =U∞

{
sinθ +

εxr

rc
exp
(

1− x2
r − y2

r

2r2
c

)}
(32)

ρ = ρ∞

{
1− (γ−1)(εM∞)

2

2
exp
(

1− x2
r − y2

r

r2
c

)} 1
γ−1

(33)

p = p∞

{
1− (γ−1)(εM∞)

2

2
exp
(

1− x2
r − y2

r

r2
c

)} γ

γ−1

(34)

where U∞, ρ∞, p∞, M∞ are the mean flow speed, density, pressure
and Mach number, respectively. θ is the direction of the mean
flow (i.e. the direction along which the vortex is convected), ε

and rc can be interpreted as the vortex strength and size. The
relative coordinates (xr,yr) are defined as,

xr = x− x0− ūt, (35)
yr = y− y0− v̄t, (36)

where ū =U∞ cosθ , v̄ =U∞ sinθ are the x and y components of
the mean velocity, (x0,y0) is the initial position of the vortex.
The exact solution of Euler vortex within a square domain (0 ≤
x,y ≤ L) with periodic boundary conditions can be achieved by
replacing the relative coordinates with the following expressions,

xr = xr−b
xr + x0

L
c ·L, (37)

yr = yr−b
yr + y0

L
c ·L, (38)

where the floor operator bxc gives the largest integer that is not
greater than a real number x, the xr and yr on the right hand side
are from Equation (35) and (36).

In this test, the uniform mean flow is chosen as
(U∞,ρ∞, p∞) = (1,1,1) with a Mach number of M∞ = 0.3. The
flow direction is set to θ = arctan(1/2). A vortex with parame-
ters: ε = 1, rc = 1, is superimposed to the mean flow. The do-
main size is 0≤ x,y≤ 10 (i.e. L = 10), and the vortex is initially
placed at the domain center (x0,y0) = (5,5). Periodic boundary
conditions are applied in both x and y directions.

The computational domain is divided into two parts: an in-
ner part with a radius of 2; an outer part which takes the rest of the
domain. The inner domain undergoes a rotating motion around
its center at a angular speed of ω = π , at the same time it heaves
vertically with the displacement prescribed as h = 0.5sin(ωt).
Due to the heaving motion, the outer domain has to be deformed
to avoid overlap between meshes. The deformation is realized
through a blending function approach, more details can be found
in [32]. Three meshes with 180, 700 and 2731 cells have been
used for accuracy tests.

Figure (5) shows the meshes and density contours at differ-
ent time instants during a period. As we can see, the rotation and
deformation of the mesh do not cause any change on the shape
of the vortex. Qualitatively, this indicates that the sliding-mesh
approach does not bring noticeable errors to the solution.

To quantitatively evaluate the accuracy of the approach, Ta-
ble 1 and Table 2 give the errors and spatial accuracy of the third-
and fourth-order schemes. The L1 and L2 errors are computed
from density at t = 2 when vortex center is traveled right onto
the sliding interface. From the two tables we see that the solver
gives very reasonable order of accuracy.

To see how efficient the solver is, we compare the total com-
putational time and the communication time on the sliding inter-
face in Table 3 and Table 4 for third- and fourth-order schemes,
respectively. Times in both tables are collected for 100 compu-
tational steps and do not include any post-processing time. It
is seen that for all test cases, communication on the sliding in-
terface takes only a few percent of the total computational time,
which clearly shows that the solver is efficient. What is inter-
esting is that the relative communication time (represented by
the percentage) decreases as either number of cells or order of
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(a) t = 0

(b) t = 0.6

(c) t = 1.4

(d) t = 2.0

FIGURE 5. Meshes and density contours of Euler vortex flow differ-
ent time instants (blue circle indicates sliding-mesh interface).

schemes increases. This is due to the fact that cells are one di-
mension higher that faces: when perform a mesh refinement, the
total number of faces in the domain grows faster than on the slid-
ing interface; when increase scheme order, the total number of
degrees of freedom in the domain also grows faster than on the
sliding interface.

cells L1 error order L2 error order

180 3.17E-4 - 7.23E-4 -

700 4.33E-5 2.93 9.65E-5 2.96

2731 5.93E-6 2.92 1.40E-5 2.90

TABLE 1. Error and order of accuracy of the 3rd order scheme on
Euler vortex flow.

cells L1 error order L2 error order

180 5.89E-5 - 1.20E-4 -

700 3.72E-6 4.07 8.22E-6 3.95

2731 2.31E-7 4.07 5.47E-7 3.97

TABLE 2. Error and order of accuracy of the 4th order scheme on
Euler vortex flow.

cells total time comm. time percentage

180 0.408551 0.016154 3.95%

700 1.361268 0.033109 2.43%

2731 5.355175 0.080721 1.51%

TABLE 3. Total computation time and interface communication time
(both in seconds) for 100 computational steps using 3rd oder scheme on
Euler vortex flow.

cells total time comm. time percentage

180 0.744496 0.020697 2.78%

700 2.299031 0.046258 2.01%

2731 9.241918 0.108961 1.18%

TABLE 4. Total computation time and interface communication time
(both in seconds) for 100 computational steps using 4th oder scheme on
Euler vortex flow.

Flow over a Plunging and Pitching Airfoil
In this section, we verify the solver on flow over a plung-

ing and pitching NACA0012 airfoil which has a chord length
of c = 1. The vertical plunging motion is given as h(t) =
Asin(2πωt), where h is the displacement, A is the amplitude of
plunging and is set to 0.25c. The pitching motion is prescribed
as θ(t) = α cos(2πωt), where θ is the pitching angle (angle be-
tween the airfoil and freestream direction), and α = π/6 is the
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maximum pitching angle. The pitching center is one third chord
length behind the leading edge. The two motions share the same
frequency which is set to ω = 0.4. The freestream flow has a
Mach number of M∞ = 0.2. The Reynolds number based on
freestream velocity and airfoil chord length is Re = 1000.

The overall computational domain has a size of 100c×100c
with the airfoil located 30c downstream from the inlet. The do-
main is decomposed into two parts: an inner circular part with a
radius of r = 2c, an outer part which takes the rest of the domain.
The inner domain undergoes pitching and plunging motion as a
rigid body, thus no grid deformation is involved. Mesh in the
outer part is set to deform moderately due to the plunging mo-
tion only, thus grid cells are only squeezed or expanded but not
twisted. A sliding-mesh interface is formed between these two
parts due to a relative pitching motion. Doing this is particularly
important for plunging and pitching airfoils with large pitching
angles since it removes the otherwise very large skewness on the
grid [1]. Figure 6 shows two local views of the mesh used for
this test case. The inner domain is meshed into 4600 cells, and
the outer 5059 cells. Mesh is refined around the leading and
trailing edges as well as in the wake region. Dirichlet boundary
condition is applied at the inlet, while pressure boundary con-
dition at the outlet. The top and bottom boundaries are set to
slip non-penetration walls. The airfoil surface is set as no-slip
isothermal wall. The time step size for the simulation is set to
∆tU∞/c = 2.0×10−4.

FIGURE 6. Two local views of mesh around a NACA0012 airfoil
(blue circle indicates sliding interface).

Both third and fourth order schemes were used for this case,
but no visible difference was seen between the results. Figure
7 shows the vorticity contours at a down stroke instant and a up
stroke instant. We see that a counterclockwise and a clockwise
vortices are shed off from the trailing edge as the airfoil moves,
which results in a vortex street in the wake region. The wake
structures are very coherent which indicates that interactions be-
tween two successive vortices are not strong. The contours also
show that the vortices pass the sliding-mesh interface smoothly
and the interface does not bring any noticeable effects to the flow
field.

FIGURE 7. Vorticity contours (blue means negative value, red means
positive) for flow over a plunging and pitching air at two time instants
(circle is sliding-mesh interface).

The CL and CD curves are plotted in Figure 8 together with
previous results from a flux reconstruction solver on moving and
deforming grid reported by Liang, et. al. [32]. We see very good
agreement between the two results, which verifies the correctness
of the new solver with sliding-mesh interface for viscous flow. It
is interesting to notice that the drag coefficient varies twice as
fast as the lift coefficient. This is because that the drag is mainly
due to the blockage effects from the airfoil since the blockage
area changes twice as fast as the plunging/pitching motions. We
also see that for the prescribed motion, the airfoil experiences a
small mean drag and a almost negligible mean lift.

The efficiencies of the third- and fourth-order schemes on
this problem is tabled in Table 5. It is seen that communica-
tions on the sliding-mesh interface introduces negligible compu-
tational cost.
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FIGURE 8. Lift and drag coefficients for flow over a plunging and
pitching airfoil.

order total time comm. time percentage

3 50.718697 0.235566 0.46%

4 89.858273 0.313078 0.35%

TABLE 5. Total computation time and interface communication time
(both in seconds) for 100 computational steps for simulation of flow
around a plunging and pitching airfoil.

STUDY OF A 2D VERTICAL AXIS WIND TURBINE
In this last test case, we apply the solver to simulate flow

around a 2D vertical axis wind turbine. Figure 9 shows two
local views of the mesh used for this simulation. The fixed

vertical axis has a circular cross section with a radius of 0.2.
NACA0015 airfoil profile is widely used for vertical axis wind
turbine blades [33] and is employed in this simulation as well.
The chord length of each blade is choose as c = 1, and the cen-
ter is at c/3. The three blades are uniformly distributed along
a circle whose radius is 1.8. The overall computational domain
has a size of 100×100, and is divided into three parts: an inner
part with a radius of 0.5 around the circular axis; a middle part
between r = 0.5 and r = 3 that contains the turbine; an outer part
which takes the rest of the domain. The circular axis is located on
the centerline of the domain, and 30c downstream from the inlet.
The inner domain is meshed to 480 cells, the middle 9537 cells,
and the outer 5604 cells. Mesh is refined around the blades, the
axis, as well as in the wake region of the turbine. The turbine ro-
tates counterclockwise at an angular speed of ω = 0.25π . Three
test cases at different Reynolds numbers have been studied, the
first case has a Reynolds number of Re = 1000, the second one
has Re = 10000, where the Reynolds number is based on inflow
speed and the blade chord length. The third case is an invis-
cid flow simulation (corresponds to Reynolds number infinity).
For all cases, the inflow has a Mach number of 0.1, Dirichlet
boundary condition is used at the inlet, while pressure boundary
condition for the outlet, meanwhile, slip boundary conditions are
adopted on the top and bottom boundaries of the domain. For the
two viscous flow cases, no-slip isothermal wall boundary condi-
tion is applied on the axis surface, and adiabatic wall boundary
conditions are adopted for the blades, and for the inviscid flow
case no penetration condition is applied on these walls. A fourth-
order scheme is used for all simulations.

Figure 10 shows the flow field around the turbine at several
time instants during one rotating period for Re = 1000. As we
can see, in the front region of the turbine, each blade interacts
with only the incoming flow most of the time. In the back region,
the flow becomes very complicated, each blade interacts strongly
with vortices from other blades. Some vortices are convected
downstream by the mean flow, and some recirculate in the near
wake region, which leads to a very vortical flow field. In Figure
10, the phase angle is measured with respect to the initial position
of the the turbine as shown in Figure 9.

To evaluate the efficiency of the turbine, the total force on
each blade is decomposed into two components: one that is par-
allel to the blade; the other that is perpendicular to the blade. For
each blade, we normalize its two force components by 1

2 ρ∞u2
∞c

and denote the two resulted coefficients as Cτ and Cn, respec-
tively. When Cτ is positive, the force is in the same direction as
the moving direction of the blade, and the blade absorbs energy
from the flow. When Cτ is negative, then force and blade are in
opposite directions and the blade loses energy to the flow. Thus
Cτ can be used to measure the efficiency of each blade. The total
efficiency of the turbine can be measured by the summation of
Cτ ’s from each blade, we denote it as CT .

Figure 11 shows the time histories of Cτ for each blade and
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FIGURE 9. Two local views of mesh for flow around a 2D vertical
axis wind turbine (two thick circles indicate sliding interfaces).

the total coefficient CT at Re = 1000. The three Cτ curves share
similar shapes, but have phase differences. It is seen that al-
though each blade experiences positive Cτ sometimes, Cτ is neg-
ative most of the time. This results in negative mean values for
Cτ and CT , which means that overall the turbine loses energy to
the flow. The reason for this is explained in Figure 12.

Phase averaged Cτ and CT for Re = 1000 are plotted in Fig-
ure 12. The averages are done over 20 rotating periods. The ro-
tating angle in Figure 12 is defined as the angle between positive
x direction (freestream direction) and the position vector (vector
from axis center to blade center) of each blade. For example, as
shown in Figure 9, the top blade (blade 1) has a rotating angle of
90◦, the bottom left one (blade 2) 210◦, and the bottom right one
(blade 3) 330◦. The phase angle is measured with respect to the

(a) phase = 0◦ (e) phase = 180◦

(b) phase = 45◦ (f) phase = 225◦

(c) phase = 90◦ (g) phase = 270◦

(d) phase = 135◦ (h) phase = 315◦

FIGURE 10. Vorticity contours of flow around a 2D vertical axis
wind turbine at different phases at Re = 1000.

initial position of the the turbine as shown in Figure 9. To inves-
tigate the cause of energy loss, C̄T is decomposed into two parts:
pressure effect and viscous friction effect. The friction contribu-
tion is plotted together with C̄T in Figure 12. It is clearly seen
that friction generates a negative parallel force at every phase an-
gle, which degrades the turbine performance dramatically. In real
applications, the Reynolds number of this flow is in the order of
1.0×106, which indicates much smaller friction effect. In what
follows, results from Re = 10000 and inviscid flow (Reynolds
number infinity) are discussed.

For Re = 10000, the time histories of Cτ and CT are plotted
in Figure 13. By increasing the Reynolds number we see obvious
increase in Cτ and CT . The phase averaged values are shown in
Figure 14, it is seen that the turbine absorbs energy from the
flow most of the time. From the first plot in Figure 14, it is
interesting to notice that each blade gains energy approximately
between rotating angle of 120◦ and 240◦, that is when it travels
to the front portion of the turbine; and during the rest part of the
rotation, there’s no obvious gaining or losing of energy for each
blade.

Results of the inviscid flow simulation are shown in Figure
15 and Figure 16. Comparing with the previous case, we see

10 Copyright c© 2015 by ASME



tU/c

C


20 40 60 80 100 120 140 160

-1

0

1

tU/c

C


20 40 60 80 100 120 140 160

-1

0

1

tU/c

C


20 40 60 80 100 120 140 160

-1

0

1

tU/c

C
T

20 40 60 80 100 120 140 160

-1

0

1

FIGURE 11. Coefficients of parallel force at Re = 1000 (from top to
bottom: blade 1, blade 2, blade 3, total).
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FIGURE 12. Phase averaged coefficient of parallel force at Re= 1000
(top, force on each blade; bottom, total force).

further increase in Cτ and CT , which means higher efficiency is
gained by the turbine. At the same time, the elimination of vis-
cosity not only removes the higher frequency components (re-
sulting in smoother curves) but also introduce phase differences
on the curves.

Finally, the efficiency of the solver on this problem is tabled
in Table 6. Again, it is found that the solver is very efficient.
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FIGURE 13. Coefficients of parallel force at Re = 10000 (from top
to bottom: blade 1, blade 2, blade 3, total).
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FIGURE 14. Phase averaged coefficient of parallel force at Re =

10000 (top, force on each blade; bottom, total force).

CONCLUSIONS
A new high-order accurate solver for the two-dimensional

compressible Navier-Stokes equation on coupled rotating and de-
forming/stationary domains with sliding-mesh interfaces is de-
veloped and tested. The solver is shown to be very accurate, at
the same time the communications on the sliding-mesh interfaces
are shown to be very efficient and introduce negligible computa-
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FIGURE 16. Phase averaged coefficient of parallel force for inviscid
flow (top, force on each blade; bottom, total force).

tional cost to the solver. The high-order curved sliding-mesh in-
terface method can also be extended to other discontinuous high-
order methods for compressible flows, and can also be extend
to 3D flow solvers. This solver can be applied to a wind range
of problems, such as the aerodynamics of rotorcrafts, oscillating
wing wind power generators.

order total time comm. time percentage

3 83.933235 0.464098 0.55%

4 146.68811 0.617841 0.42%

TABLE 6. Total computation time and interface communication time
(both in seconds) for 100 computational steps for simulation of flow
around a 2D vertical axis wind turbine.

ACKNOWLEDGMENT
The authors would like to express our acknowledgments for

the support from an ONR Young Investigator Program awarded
to Chunlei Liang and administrated by Dr. Ki-Han Kim.

REFERENCES
[1] Zhang, B., and Liang, C., 2015. “A simple, efficient, high-

order accurate sliding-mesh interface approach to FR/CPR
method on coupled rotating and stationary domains”. AIAA
paper 2015-1742.

[2] Wang, Z. J., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni,
D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K.,
Huynh, H. T., Kroll, N., May, G., Persson, P.-O., van Leer,
B., and Visbal, M., 2013. “High-order CFD methods: cur-
rent status and perspective”. International Journal for Nu-
merical Methods in Fluids, 72(8), pp. 811–845.

[3] Karniadakis, G. E., and Sherwin, S. J., 2005. Spec-
tral/hp Element Methods for Computational Fluid Dynam-
ics, 2nd ed. Oxford University Press, Oxford.

[4] Hesthaven, J. S., and Warburton, T., 2008. Nodal Dis-
continuous Galerkin Methods: Algorithms, Analysis, and
Applications, Vol. 54 of Texts in Applied Mathematics.
Springer, New York.

[5] Wang, Z. J., ed., 2011. Adaptive High-Order Methods
in Computational Fluid Dynamics, Vol. 2 of Advances in
Computational Fluid Dynamics. World Scientific.

[6] Cockburn, B., Karniadakis, G. E., and Shu, C.-W., eds.,
2011. Discontinuous Galerkin Methods: Theory, Compu-
tation and Applications, Vol. 11 of Lecture Notes in Com-
putational Science and Engineering. Springer, New York.

[7] Ekaterinaris, J. A., 2005. “High-order accurate, low nu-
merical diffusion methods for aerodynamics”. Progress in
Aerospace Sciences, 41(3-4), April-May, pp. 192–300.

[8] Wang, Z. J., 2007. “High-order methods for the Euler and
Navier-Stokes equations on unstructured grids”. Progress
in Aerospace Sciences, 43(1-3), pp. 1–41.

[9] Reed, W. H., and Hill, T. R., 1973. Triangular mesh meth-
ods for the neutron transport equation. Tech. Rep. LA-UR–
73-479; CONF-730414–2, Los Alamos Scientific Labora-
tory.

[10] Cockburn, B., Hou, S., and Shu, C.-W., 1990. “The Runge-

12 Copyright c© 2015 by ASME



Kutta local projection discontinuous Galerkin finite ele-
ment method for conservation laws IV: The multidimen-
sional case”. Mathematics of Computation, 54(190), April,
pp. 545–581.

[11] Cockburn, B., and Shu, C.-W., 2001. “Runge-Kutta discon-
tinuous Galerkin methods for convection-dominated prob-
lems”. Journal of Scientific Computing, 16(3), September,
pp. 173–261.

[12] F.Bassi, and Rebay, S., 1997. “High-order accurate discon-
tinuous finite element solution of the 2D Euler equations”.
Journal of Computational Physics, 138(2), pp. 251–285.

[13] Bassi, F., and Rebay, S., 1997. “A high-order accurate dis-
continuous finite element method for the numerical solution
of the compressible Navier-Stokes equations”. Journal of
Computational Physics, 131, pp. 267–279.

[14] Jameson, A., and Lodato, G., 2014. “A note on the nu-
merical dissipation from high-order discontinuous finite el-
ement schemes”. Computers & Fluids, 98(2), September,
pp. 186–195.

[15] Kopriva, D. A., and Kolias, J. H., 1996. “A conservative
staggered-grid Chebyshev multidomain method for com-
pressible flows.”. Journal of Computational Physics, 125,
pp. 244–261.

[16] Liu, Y., Vinokur, M., and Wang, Z. J., 2006. “Spectral
difference method for unstructured grids I: Basic formula-
tion”. Journal of Computational Physics, 216, pp. 780–
801.

[17] Wang, Z. J., Liu, Y., May, G., and Jameson, A., 2007.
“Spectral difference method for unstructured grids II: Ex-
tension to the Euler equations”. Journal of Scientific Com-
puting, 32, pp. 45–71.

[18] Liang, C., Premasuthan, S., Jameson, A., and Wang, Z. J.,
2009. “Large eddy simulation of compressible turbulent
channel flow with spectral difference method”. AIAA paper
2009-402.

[19] Mohammad, A. H., Wang, Z. J., and Liang, C., 2010. “LES
of turbulent flow past a cylinder using spectral difference
method”. Advances in Applied Mathematics and Mechan-
ics, 2, pp. 451–466.

[20] Parsani, M., Ghorbaniasl, G., Lacor, C., and Turkel, E.,
2010. “An implicit high-order spectral difference approach
for large eddy simulation”. Journal of Computational
Physics, 229, pp. 5373–5393.

[21] Lodato, G., Castonguay, P., and Jameson, A., 2014. “Struc-
tural wall-modeled LES using a high-order spectral differ-
ence scheme for unstructured meshes”. Flow, Turbulence
and Combustion, 92(1-2), pp. 579–606.

[22] Ou, K., Liang, C., and Jameson, A., 2010. “High-order
spectral difference method for the Navier-Stokes equations
on unstructured moving deforming grids”. AIAA paper
2010-0541.

[23] Yu, M. L., Wang, Z. J., and Hu, H., 2011. “A high-

order spectral difference method for unstructured dynamic
grids”. Computers & Fluids, 48, pp. 84–97.

[24] Liang, C., Ou, K., Premasuthan, S., Jameson, A., and
Wang, Z., 2011. “High-order accurate simulations of un-
steady flow past plunging and pitching airfoils”. Computers
& Fluids, 40, pp. 236–248.

[25] Thomas, P. D., and Lombard, C. K., 1979. “Geometric
conservation law and its application to flow computations
on moving grids”. AIAA Journal, 17.

[26] Spiteri, R. J., and Ruuth, S. J., 2002. “A new class of opti-
mal high-order strong-stability-preserving time discretiza-
tion methods”. SIAM J. Numer. Anal., 40, pp. 469–491.

[27] Liang, C., Jameson, A., and Wang, Z. J., 2009. “Spectral
difference method for two-dimensional compressible flow
on unstructured grids with mixed elements”. Journal of
Computational Physics, 228, pp. 2847–2858.

[28] Liang, C., Premasuthan, S., and Jameson, A., 2009.
“High-order accurate simulation of low-mach laminar flow
past two side-by-side cylinders using spectral difference
method”. Computers & Structures, 87, pp. 812–817.

[29] Rusanov, V. V., 1961. “Calculation of interaction of non-
steady shock waves with obstacles”. Journal of Computa-
tional and Mathematical Physics USSR, 1, pp. 267–279.

[30] Kopriva, D. A., 1996. “A conservative staggered-grid
Chebyshev multidomain method for compressible flows.
II. A semi-structured method”. Journal of Computational
Physics, 128, pp. 475–488.

[31] Erlebacher, G., Hussaini, M. Y., and Shu, C.-W., 1997. “In-
teraction of a shock with a longitudinal vortex”. Journal of
Fluid Mechanics, 337.

[32] Liang, C., Miyaji, K., and Zhang, B., 2014. “An efficient
correction procedure via reconstruction for simulation of
viscous flow on moving and deforming domains”. Journal
of Computational Physics, 256, pp. 55–68.

[33] Li, C., Zhu, S., Xu, Y., and Xiao, Y., 2013. “2.5D large eddy
simulation of vertical axis wind turbine in consideration of
high angle of attack flow”. Renewable Energy, 51, March,
pp. 317–330.

13 Copyright c© 2015 by ASME




