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In this paper, we report a simple, efficient, high-order accurate sliding-mesh interface
approach to the flux reconstruction/correction procedure via reconstruction (FR/CPR)
method. We demonstrate the usefulness of this approach by solving 2D compressible
Navier-Stokes equations on unstructured quadrilateral grids. This approach is an extension
of the straight mortar method on stationary grid1,2 to sliding-mesh interfaces with curved,
dynamic mortars. On the sliding-mesh interfaces, common values of conservative variables
as well as inviscid and viscous fluxes are computed on mortars. They are then projected
back to the attached cell faces to ensure conservation. To demonstrate the spatial order of
accuracy of the sliding-mesh FR/CPR method, both inviscid and viscous benchmark flows
are simulated. It is shown that the sliding-mesh FR/CPR method preserves the high order
accuracy of FR/CPR method, and is very efficient in terms of computational cost. This
novel curved sliding-mesh interface method can have a wide range of applications, such as
rotorcraft aerodynamics, wind turbine wake dynamics, marine propellers, and oscillating
wing wind power generators.

I. Introduction

During the last two decades, high-order (third and above) numerical methods have attracted wider range
of interests in research communities, especially in the computational fluid dynamics (CFD) community.
High-order methods are capable of producing more accurate solutions on relatively coarse grids at lower
computational cost than low-order methods.3 Researchers also began to use high-order methods to deal
with very challenging fluid flow problems with complex geometries. Summaries of recent development and
applications of high-order methods can be found in several books4,5, 6, 7 and review papers.3,8, 9

Among the numerous high-order methods, the discontinuous Galerkin (DG) method gained enormous
popularity in the past decade for solving conservation laws on unstructured grid. The idea of the DG
method was first introduced by Reed and Hill10 to solve neutron transport equations. Cockburn, Shu,
Bassi, Rebay and others7,11,12,13,14 developed the DG method extensively and applied it to fluid dynamics
problems. However, the computational complexity of the DG method increases rapidly as the order of
accuracy increases.15

Instead of solving the equations in integral form as in the DG method, Kopriva16 proposed a staggered-
grid Chebyshev multidomain method, which solves the differential form of the conservation laws. Liu et
al.17 and Wang et al.18 extended this method to unstructured triangular and quadrilateral grids and
named the more general method as spectral difference (SD) method. For SD method on quadrilateral
grids, solutions and fluxes in each coordinate direction in the computational domain are represented by 1D
Lagrange polynomials, whereas the multi-dimensional solutions within each cell are reconstructed by tensor
products of Lagrange polynomials. The 1D representation reduces the computational cost of fluxes and their
derivatives dramatically, and makes the SD method very efficient and high-order accurate.

Recently, Huynh19,20,21 introduced the flux reconstruction (FR) framework, which can further simplify
the SD method. While in SD method, flux points and solution points are in a staggered fashion, they are
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collocated under the FR framework. Meanwhile, fluxes are corrected via a correction function that is one
degree higher than solution polynomials. Huynh showed that for linear cases, depending on the choices of
correction functions, FR method can recover several existing high-order methods, such as DG, SD and SV.22

In addition, FR method results in numerous new schemes with favorable properties21 . Wang and Gao23

extended FR method to 2D unstructured grids under the lifting collocation penalty (LCP) framework. Since
FR and LCP share similarities, the involved authors then named the two methods to correction procedure
via reconstruction (CPR) method. Liang et al.24 compared the efficiency between SD method and FR/CPR
method with g2 correction function. They found that FR/CPR method is generally faster than SD method,
for some cases, FR/CPR method can be as much as 45% faster. Yu et al.25 carried out a comprehensive
study on the accuracy and efficiency of DG, SD and FR/CPR methods. They found that FR/CPR method
is much more efficient than DG, while the accuracies are comparable.

Liang et al.26 extended FR/CPR method to solve Navier-Stokes equations on moving and deforming
grids. They showed that FR/CPR method is more efficient than SD method even on dynamic grids, and
their accuracies are close. However, the deforming grid approach fails when the grid undergoes very large
rotational or translational motion, e.g. grid around a propeller. Therefore, a high-order accurate re-meshing
technique shall be developed.

The low-order method community face a similar problem, and a few solutions were proposed in the
past decades. One of the most popular approaches is the Chimera or overset approach,27,28 where multiple
component grids and background grids are used, and the communications are done through interpolations
between the two sets of grids. Rai29,30 introduced “zonal” and “patched-grid” approaches to 2D Euler
equations. In his approaches, fluxes on the non-conforming interfaces are constructed through a weighted
summation. Behr and Tezduyar31 designed a “shear-slip mesh” method. In their method, grid components
are connected through local re-meshing in shear-slip layers, and no over-lapping grids are involved. Several
research groups32,33,34 use halo nodes or halo cells approaches for rotating grids, where halo nodes or cells
are extruded to the opposite side of the sliding interface to extrapolate information.

However, when it comes to high-order methods, such as FR/CPR method, the low-order approaches
do not work directly. One reason is that in low-order approaches, solutions are often approximated as a
constant or a linear function within each cell, while in high-order methods they are usually represented by
higher degree polynomials, which leads to compatibility problems. Another reason is that many of these
approaches are not conservative, and will degrade the accuracy of high-order methods. These reasons have
led us to the development of a new method that is high-order accurate and efficient for the FR/CPR method.

In this paper, we present a novel curved dynamic mortar approach to the FR/CPR method with sliding-
mesh interfaces. The mortar method was originally proposed for incompressible flow by Mavriplis.1 Ko-
priva2,35 applied this method to compressible Euler and Navier-Stokes equations on fixed multi-domain
structured grids. In our approach, the paring between cell faces and mortars, as well as the sizes and pairing
offsets of mortars are changing over time. The common values of conservative variables as well as inviscid
and viscous fluxes are computed on each mortar, and then projected back to the attached cell faces to en-
sure conservation. We show that our sliding-mesh approach is as simple as those designed for lower-order
methods and it preserves the high-order accuracy of FR/CPR method. This simple but novel sliding-mesh
FR/CPR method can have a wide range of applications, such as rotorcraft aerodynamics, wind turbine wake
dynamics, marine propellers, and oscillating wing wind power generators.

The paper is organized as follows: Section II gives the mathematical equations. Section III reviews the
FR/CPR method and presents the sliding-mesh FR/CPR method in details. Accuracy tests and applications
are reported in Section IV. Finally, Section V concludes the paper.

II. Mathematical formulation

II.A. Compressible Navier-Stokes equations on stationary domain

We consider 2D unsteady compressible Navier-Stokes equations in conservative form,

∂Q

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (1)
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where Q is the vector of conservative variables, F and G are x and y components of the flux vector. These
terms have the following expressions,

Q = [ρ ρu ρv E]T , (2)

F = Finv(Q) + Fvis(Q,∇Q), (3)

G = Ginv(Q) + Gvis(Q,∇Q), (4)

where ρ is fluid density, u and v are x and y components of velocity, E is the total energy per volume defined
as E = p/(γ − 1) + 1

2ρ(u2 + v2), p is pressure, γ is the ratio of specific heats and is set to 1.4.
As shown in Equations (3) and (4), the fluxes have been divided into inviscid and viscous parts. The

inviscid fluxes are only functions of conservative variables which are,

Finv =


ρu

ρu2 + p

ρuv

(E + p)u

 , Ginv =


ρv

ρuv

ρv2 + p

(E + p)v

 . (5)

The viscous fluxes are functions of the conservative variables as well as their gradients. They have the
following expressions,

Fvis = −


0

τxx

τyx
uτxx + vτyx + kTx

 , Gvis = −


0

τxy

τyy
uτxy + vτyy + kTy

 , (6)

where τij is shear stress tensor which is related to velocity gradients as τij = µ(ui,j + uj,i) + λδijuk,k,
µ is dynamic viscosity, λ = −2/3µ based on Stokes’ hypothesis, δij is the Kronecker delta, k is thermal
conductivity, T is temperature that is related to density and pressure through the ideal gas law p = ρRT ,
where R is the gas constant.

II.B. Compressible Navier-Stokes equations on rotating domain

On rotating domains, we implement an equation that is equivalent to the arbitrary Lagrange-Eulerian
(ALE)36 form of Equation (1). Due to grid motion, the inviscid fluxes are modified to take the follow-
ing forms,

Finv =


ρu

ρu2 + p

ρuv

(E + p)u

− ug


ρ

ρu

ρv

E

 , Ginv =


ρv

ρuv

ρv2 + p

(E + p)v

− vg


ρ

ρu

ρv

E

 , (7)

where ug and vg are the x and y components of grid velocity respectively. The viscous fluxes and all other
variables stay unaffected and take the same expressions as those in the previous section.

For a domain rotating at angular velocity ω, the grid velocities are (ug, vg) = ω × r, where r is the
position vector with respect to rotating center. For all test cases in the present study, ω is known as a priori,
thus grid velocities and coordinates are updated analytically on the rotating domains.

II.C. The transformed equations

As will be discussed in the next section, we map each quadrilateral cell in the physical domain to a standard
square element in a computational domain. This mapping facilitates the construction of solution and flux
polynomials. As a result, we only need to solve a set of transformed equations within each standard element.
Let us assume that the physical coordinates (x, y) are mapped to the computational ones (ξ, η) through
a transformation: x = x(ξ, η), y = y(ξ, η). It can be shown that Equation (1) will take the following
conservative form after coordinates transformation,

∂Q̃

∂t
+
∂F̃

∂ξ
+
∂G̃

∂η
= 0, (8)
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where Q̃ = |J |Q, and the transformed fluxes F̃, G̃ are related to the physical ones as,(
F̃

G̃

)
= |J |J−1

(
F

G

)
, (9)

where |J | is determinant of the Jacobian matrix, J−1 is the inverse Jacobian matrix:

|J | =
∣∣∣∣∂(x, y)

∂(ξ, η)

∣∣∣∣ =

∣∣∣∣∣ xξ xη
yξ yη

∣∣∣∣∣ = xξyη − xηyξ, (10)

J−1 =
∂(ξ, η)

∂(x, y)
=

[
ξx ξy
ηx ηy

]
=

1

|J |

[
yη −xη
−yξ xξ

]
. (11)

III. Numerical methods

In this section, we first give a brief review of FR/CPR method. Subsequently, we describe a newly formu-
lated sliding-mesh interface technique that is built on the FR/CPR formulation. For temporal discretization,
an explicit strong stability preserving Runge-Kutta method37 is used for all computations throughout this
paper.

III.A. The FR/CPR method

For FR/CPR method on quadrilateral grids, we first transform each cell from the physical domain to a
standard square element (0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1) in the computational domain. The transformation can be
done through iso-parametric mapping. As was reported by previous researches,38,39 using linear cells defined
by 4 nodes will generate instabilities for problems involving curved boundaries. Thus, high order cells with
12 nodes are used along the curved boundaries to ensure stability and accuracy in the present study.

After iso-parametric mapping, solution points (SPs) and flux points (FPs) are defined on the element.
There are several ways to arrange SPs and FPs.25,26,40 In this study, they are arranged in a way as shown in
Figure 1. For an N -th order FR/CPR method, N ×N collocating SPs and FPs are used in the interior, and
N auxiliary points which align with SPs (FPs) are defined on each boundary edge to facilitate computation
of interface fluxes. The SPs (FPs) are chosen as N Lobatto points along each direction. This configuration
allows us to construct solution and fluxes as degree (N − 1) polynomials. Due to the existence of first order
spatial derivatives on flux terms (Equation (8)), a degree N correction function g is employed to correct the
fluxes. Here, we take gDG as our correction function, more information on gDG can be found in Huynh’s
papers.19,20,21

0 ξ 1

1

η

Figure 1. Schematic of arrangement of points for a fourth order FR/CPR method: circular dots, SPs (FPs); square
dots, axillary boundary points for interface flux computation.

The basic steps of FR/CPR method are described as below:
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(a) Given Q at SPs, compute Finv and Ginv at SPs from Equations (5) and (7), and transform them

to computational fluxes (F̃inv and G̃inv) according to Equation (9). The solution and inviscid fluxes
within each cell are reconstructed as,

Q(ξ, η) =
N∑
j=1

N∑
i=1

Q̃i,j

|Ji,j |
hi(ξ) · hj(η), (12)

F̃inv(ξ, η) =
N∑
j=1

N∑
i=1

F̃invi,j hi(ξ) · hj(η), (13)

G̃inv(ξ, η) =
N∑
j=1

N∑
i=1

G̃inv
i,j hi(ξ) · hj(η), (14)

where h represents the Lagrange basis,

hα(X) =
N∏

s=1,s6=α

(
X −Xs

Xα −Xs

)
, (15)

with X as coordinate, Xα and Xs are SPs.

(b) Compute Q, F̃ and G̃ on cell boundaries by Lagrange interpolation. Take the cell in Figure 1 for

example, we will compute Q0,j , F̃inv0,j , and G̃inv
0,j for the left face, QN+1,j , F̃invN+1,j , and G̃inv

N+1,j for the

right face, Qi,0, F̃invi,0 , and G̃inv
i,0 for the bottom face, and Qi,N+1, F̃invi,N+1, and G̃inv

i,N+1 for the top face.

(c) Compute common inviscid fluxes on cell interfaces using a Riemann solver. In the present work, the
Rusanov solver41 has been used for this purpose. Take the left cell face in Figure 1 as an example, the
common inviscid flux is computed as,

Finv,com0,j =
1

2
[(Finv,−0,j + Finv,+0,j )n− λ(Q+

0,j −Q−0,j)], (16)

where λ = |Vn| + c is the characteristic speed with the largest magnitude, Vn is the fluid velocity
normal to the interface and c is the local sound speed. The superscripts ‘−’ and ‘+’ represent values
on the left and right of the interface, respectively. The above common inviscid flux is transformed to
computational one, F̃inv,com0,j , through Equation (9).

(d) Compute derivatives of corrected fluxes at SPs. For instance, the derivative of F̃inv is computed as,

(F̃invξ )i,j =
N∑
α=1

F̃invα,jh
′
α(ξi) + [F̃inv,com0,j − Finv0,j ] · g′L(ξi) + [F̃inv,comN+1,j − FinvN+1,j ] · g′R(ξi), (17)

where gL and gR are the left and right correction functions, respectively.

(e) Compute common conservative variables on cell boundaries. Take the left cell face in Figure 1 for
example,

Qcom
0,j =

1

2
(Q−0,j + Q+

0,j). (18)

(f) Compute gradients (∇Q) of corrected conservative variables. For example, the x component can be
computed as,

(Qx)i,j =
N∑
α=1

Q̃α,j

|Jα,j |
h′α(ξi) · (ξx)α,j +[(Qcom

0,j −Q0,j) ·g′L(ξi)+(Qcom
N+1,j−QN+1,j) ·g′R(ξi)] · (ξx)i,j , (19)

and (Qy)i,j can be computed in the same way.

(g) Compute Fvis and Gvis at SPs using Equation (6), and convert them to F̃vis and G̃vis through
Equation (9). The reconstructed viscous fluxes in each cell have similar expressions as those for the
inviscid fluxes in Equation (13) and (14).
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(h) Compute gradients and viscous fluxes on cell boundaries by Lagrange interpolation. Take the left cell

face in Figure 1 for example, we will compute (∇Q)0,j , F̃vis0,j and G̃vis
0,j . For the right boundary face,

we will compute (∇Q)N+1,j , F̃visN+1,j and G̃vis
N+1,j , etc.

(i) Compute common gradients and viscous fluxes on cell interfaces. Take the left cell face in Figure 1 for
example,

(∇Q)com0,j =
1

2
((∇Q)−0,j + (∇Q)+

0,j), (20)

Fvis,com0,j = Fvis(Q
com
0,j , (∇Q)com0,j ), (21)

where the function Fvis on the right hand side is defined in Equation (6), and the above physical flux

is is again transformed to computational one, F̃vis,com0,j , through Equation (9).

(j) Compute derivatives of corrected viscous fluxes as SPs. For instance, the derivative of F̃vis is computed
as,

(F̃visξ )i,j =
N∑
α=1

F̃visα,jh
′
α(ξi) + [F̃vis,com0,j − Fvis0,j ] · g′L(ξi) + [F̃vis,comN+1,j − FvisN+1,j ] · g′R(ξi). (22)

(k) Now we have the flux derivatives from step (d) and step (j), residual can be computed and solution
can be updated at the SPs.

Readers are referred to previous publications21,24,26 for more details on FR/CPR method.

III.B. The sliding interface treatment

Sliding-mesh interfaces are formed between rotating and stationary meshes. The simplest situation involves
only one rotating mesh and one stationary mesh as shown in Figure 2. The inner mesh can rotate while
the outer is fixed, or vice versa. Communication between the stationary and rotating meshes are realized
through “mortars”. To make the explanation intuitive, we have scaled the inner mesh in order to place
mortars in between two coupled meshes.

Figure 2. Schematic of distribution of mortars (hatched) between a rotating mesh and a stationary mesh.

The mortars are arranged in a counterclockwise order. We refer the inner mesh as left (L) and the outer
mesh as right (R) with respect to mortars. To facilitate code implementation and reduce computational
cost, cell faces on both sides of the sliding interface have been meshed uniformly. A closer look at Figure 2
reveals how mortars and cell faces on the sliding interface are connected: at each time instant, a cell face is
connected to two mortars, and each mortar is associated with one left cell face and one right cell face. This
face and mortar connectivity needs to be updated at every stage of the Runge-Kutta time stepping method.

Figure 3 shows a cell face Ω and the attached two mortars Ξ1 and Ξ2. Each curved mortar is mapped to a
straight edge 0 ≤ z ≤ 1 through 1D iso-parametric mapping. Face Ω is mapped to a straight edge 0 ≤ ξ ≤ 1
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when the associated cell is mapped to a standard square element, thus no extra mapping is required. ξ and
z are related by

ξ = o(t) + s(t)z, (23)

where o(t) is an offset of the mortar relative to the bottom node of Ω at time t, and s(t) is the relative
scaling. For the example shown in Figure 3, we have o1 = 0 and s1 = LΞ1/LΩ for Ξ1, o2 = LΞ1/LΩ and
s2 = LΞ2/LΩ for Ξ2, where L means physical length of face and mortars.

Ω

Ξ1

Ξ2

Ω

Ξ2

Ξ1

Figure 3. Mapping of curved cell face and mortars to straight ones: left, curved face and mortars in physical domain;
right, straight face and mortars in computational domain.

According to Equation (12), solutions on Ω can be represented as,

QΩ =
N∑
i=1

QΩ
i hi(ξ), (24)

where QΩ
i represents solution at the i-th SP on Ω, hi is the Lagrange basis defined in Equation (15). If we

define the same set of SPs on 0 ≤ z ≤ 1 for each mortar, then solutions on each mortar can be reconstructed
similarly,

QΞ =

N∑
i=1

QΞ
i hi(z), (25)

where QΞ
i is the solution at the i-th SP on a mortar Ξ.

The procedure for computing QΞ
i is demonstrated in Figure 4(a). For simplicity, we only show the process

on the left side of mortar Ξ. To get the solutions, we require that,∫ 1

0

(QΞ,L(z)−QΩ(ξ))hj(z)dz = 0, j = 1, 2, ..., N. (26)

Substitute Equations (23)-(25) into the above equation and evaluate it at each SP on Ξ will give a system
of linear equations. The solution of this system when written in matrix form is,

QΞ,L = PΩ→ΞQΩ = M−1SΩ→ΞQΩ, (27)

where PΩ→Ξ is the projection matrix from Ω to Ξ, the matrices M and SΩ→Ξ have the following elements,

Mi,j =

∫ 1

0

hi(z)hj(z)dz, i, j = 1, 2, ..., N, (28)

SΩ→Ξ
i,j =

∫ 1

0

hi(o+ sz)hj(z)dz, i, j = 1, 2, ..., N, (29)

where o and s are the offset and scaling of Ξ with respect to Ω. It is important to note that o and s are
time-dependent for the sliding-mesh interface method.

The right solution vector QΞ,R can be computed in the same way. Having both left and right solutions
on a mortar, the Rusanov solver41 is employed to compute common inviscid flux FΞ

inv. This flux is then

transformed to the computational flux as F̃Ξ
inv according to Equation (9).

As shown in Figure 4(b), to project the common inviscid fluxes F̃Ξ1
inv and F̃Ξ2

inv back to face Ω, we require
that, ∫ o2

0

(F̃Ω
inv(ξ)− F̃Ξ1

inv(z))hj(ξ)dξ +

∫ 1

o2

(F̃Ω
inv(ξ)− F̃Ξ2

inv(z))hj(ξ)dξ = 0, j = 1, 2, ..., N, (30)
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Ω
Ξ

(a)

Ω

Ξ2

Ξ1

(b)

Figure 4. Projection between face and mortar: (a) from left face to left side of mortar, (b) from two mortars back to
the associated left face.

where F̃Ω
inv(ξ) is the inviscid flux polynomial on face Ω. Solution of the above equation when written in

matrix form is,

F̃Ω
inv = PΞ1→ΩF̃Ξ1

inv + PΞ2→ΩF̃Ξ2
inv = s1M

−1SΞ1→ΩF̃Ξ1
inv + s2M

−1SΞ2→ΩF̃Ξ2
inv, (31)

where the matrix M is identical to that in Equation (27), and matrices SΞ1→Ω and SΞ2→Ω are simply
transposes of SΩ→Ξ1 and SΩ→Ξ2 , respectively.

For the computation of common viscous fluxes, we first compute the common solution on each mortar as
the average of the left and right solutions,

QΞ =
1

2
(QΞ,L + QΞ,R). (32)

This common solution is then projected back to cell faces in the same procedure as for the inviscid flux in
Equation (31). After that, solution gradients and viscous fluxes are updated on both side of the interfaces.

The viscous fluxes F̃Ω
vis on cell faces are projected to mortars in the same way as Equation (27). The common

viscous flux F̃Ξ
vis on a mortar is the average of left and right viscous fluxes,

F̃Ξ
vis =

1

2
(F̃Ξ,L

vis + F̃Ξ,R
vis ). (33)

The final step is to project F̃Ξ
vis back to faces, which is identical to the process in Equation (31).

Since uniform mesh is used for cell faces on the sliding interface, the S matrix only need to be computed
for the first two mortars, and can be reused by other corresponding mortars. At the same time since the M
matrix is time independent, it can be precomputed before the actual calculation. To compute the integrals
in Equations (28) and (29), one can use the Clenshaw-Curtis quadrature method42 as was used by previous
researchers. In this study, the integrand is casted into a general form as a product of 2(N − 1) first degree
polynomials, and we implement a recursive algorithm to compute the integrals analytically. This approach
requires the least number of operations which is much more efficient than the Clenshaw-Curtis quadrature
method.

IV. Numerical tests

In this section we test the accuracy of the sliding-mesh FR/CPR method on both inviscid and viscous
flows, and then apply this method to study flows around a rotating elliptic cylinder and a pitching airfoil.
A five-stage forth order Runge-Kutta method for time stepping37 is used for all test cases. For accuracy
tests, various time step sizes were used in each case to make sure that the errors are almost time step size
independent and are dominated by spacial discretization errors.

IV.A. Euler vortex flow

We first test the solver on an inviscid flow. For inviscid flow test, Euler vortex problem is an ideal choice and
it has been used by many researchers, one of such an example can be found in the paper by Erlebacher et
al.43 In Euler vortex problem, an isentropic vortex is superimposed to an uniform mean flow and convected
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by the mean flow. The flow field in an infinite domain at a time instant t can be analytically expressed as,

u = U∞

{
cos θ − εyr

rc
exp

(
1− x2

r − y2
r

2r2
c

)}
(34)

v = U∞

{
sin θ +

εxr
rc

exp

(
1− x2

r − y2
r

2r2
c

)}
(35)

ρ = ρ∞

{
1− (γ − 1)(εM∞)2

2
exp

(
1− x2

r − y2
r

r2
c

)} 1
γ−1

(36)

p = p∞

{
1− (γ − 1)(εM∞)2

2
exp

(
1− x2

r − y2
r

r2
c

)} γ
γ−1

(37)

where U∞, ρ∞, p∞, M∞ are the mean flow speed, density, pressure and Mach number respectively, θ is the
direction of the mean flow (i.e. the direction along which the vortex is convected), ε and rc can be interpreted
as vortex strength and size. The relative coordinates (xr, yr) are defined as,

xr = x− x0 − ūt, (38)

yr = y − y0 − v̄t, (39)

where ū = U∞ cos θ, v̄ = U∞ sin θ are the x and y components of the mean velocity, (x0, y0) is the initial
position of the vortex. The exact solution of Euler vortex within a square domain (0 ≤ x, y ≤ L) with periodic
boundary conditions can be achieved by replacing the relative coordinates with the following expressions,

xr = xr − b
xr + x0

L
c · L, (40)

yr = yr − b
yr + y0

L
c · L, (41)

where the floor operator bxc gives the largest integer that is not greater than a real number x, the xr and
yr on the right hand side are from Equation (38) and (39).

In this test, the uniform mean flow is chosen as (U∞, ρ∞, p∞) = (1, 1, 1) with a Mach number ofM∞ = 0.3.
The flow direction is set to θ = arctan(1/2). A vortex with parameters: ε = 1, rc = 1, is superimposed to
the mean flow. The domain size is 0 ≤ x, y ≤ 10 (i.e. L = 10), and the vortex is initially located at the
domain center (x0, y0) = (5, 5). Periodic boundary conditions are applied in both x and y directions.

Figure (5) shows a computational mesh with 700 cells. The mesh is composed by two parts: an inner part
with a radius of 2 which can rotate; a fixed outer part which takes the rest of the computational domain.
Three meshes with 180, 700 and 2731 cells have been used for accuracy tests. For all three cases, the inner
part is set to rotate at an angular speed of ω = 1.0.

Figure 5. Mesh with 700 cells at a time instant for Euler vortex flow simulation (blue circle indicates sliding interface).

Figure (6) compares density contour of the exact solution and that from fourth oder sliding-mesh FR/CPR
method on the finest mesh at t = 2. At this time instant, the vortex is traveled to a position with its center

9 of 21

American Institute of Aeronautics and Astronautics



Figure 6. Contour of density at time instant t = 2. Left, exact solution; right, numerical solution from 4th order scheme
(blue circle indicates location of sliding interface).

right on the sliding interface. As we can see, the solver resolves the vortex very well, and we see no visible
difference between the exact solution and the numerical one.

Further more, Table 1 and Table 2 give the spatial accuracy of the scheme, where the L1 and L2 errors
are computed from density at t = 2 when vortex center is traveled right onto the sliding interface. From the
two tables we see that the sliding-mesh FR/CPR method gives very reasonable order of accuracy.

cells L1 error order L2 error order

180 1.34E-4 - 3.16E-4 -

700 1.78E-5 2.97 4.32E-5 2.93

2731 2.60E-6 2.90 6.69E-6 2.84

Table 1. Error and order of accuracy of the 3rd order scheme on Euler vortex flow.

cells L1 error order L2 error order

180 2.73E-5 - 5.26E-5 -

700 1.74E-6 4.05 3.36E-6 4.05

2731 1.30E-7 3.93 2.93E-7 3.81

Table 2. Error and order of accuracy of the 4th order scheme on Euler vortex flow.

To see how efficient the sliding-mesh FR/CPR method is, we compare the total computational time
and the communication time on the sliding interface in Table 3 and Table 4 for third and fourth order
schemes, respectively. Times in both tables are collected for 100 computational steps and do not include
any post-processing time. It is seen that for all test cases, communication on the sliding interface takes only
a few percent of the total computational time, which clearly shows that the sliding-mesh FR/CPR method
is efficient. What is interesting is that the relative communication time (represented by the percentage)
decreases as either number of cells or order of schemes increases. This is due to the fact that cells are one
dimension higher that faces: when perform a mesh refinement, the total number of faces in the domain grows
faster than on the sliding interface; when increase scheme order, the total number of degrees of freedom in
the domain also grows faster than on the sliding interface.

IV.B. Taylor-Couette flow

To test the order accuracy on viscous flow, we use Taylor-Couette flow as the test case. Previous re-
searchers39,44 used similar flows to test the accuracy of their solvers. In the present test, the inner cylinder
has a radius of ri = 1, the outer cylinder has radius of ro = 2. Both boundaries are set to be isothermal
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cells total time comm. time percentage

180 0.249664 0.017105 6.85%

700 0.894914 0.033392 3.73%

2731 4.492501 0.085210 1.87%

Table 3. Total computation time and interface communication time (both in seconds) for 100 computational steps using

3rd oder scheme on Euler vortex flow.

cells total time comm. time percentage

180 0.391325 0.022380 5.72%

700 1.402065 0.044611 3.18%

2731 7.343970 0.110397 1.50%

Table 4. Total computation time and interface communication time (both in seconds) for 100 computational steps using

4th oder scheme on Euler vortex flow.

walls. The domain has been divided into two parts at r = 1.5. The inner part rotates at an angular speed of
ωi = 1 while the outer part stays stationary. Reynolds number based the inner cylinder radius and velocity
is Re = 10. Mach number on the inner wall is set to be Mai = 0.1. Three meshes with 192, 768 and 3072
cells are used for the tests. Figure 7 shows the mesh with 192 cells.

Figure 8 shows the steady state contours of u velocity and Mach number form fourth oder scheme on the
finest mesh. We see that the steady state Mach contours are a series of concentric circles, and the u velocity
is highly symmetric. These results are consistent with our expectations and the analytical solutions.

The exact solution for the circumferential velocity has the following relation to radius r,

vθ = ωiri
ro/r − r/ro
ro/ri − ri/ro

, (42)

The x component of this velocity (i.e. u) is used to compute the L1 and L2 errors. From Table 5 and Table
6 we see that the sliding-mesh FR/CPR method preserves the high order accuracy for viscous flow as well.

Figure 7. Mesh with 192 cells at a time instant for Taylor-Couette flow simulation (blue circle indicates sliding interface).

cells L1 error order L2 error order

192 9.28E-5 - 1.35E-4 -

768 1.26E-5 2.88 1.78E-5 2.92

3072 1.83E-6 2.83 3.02E-6 2.74

Table 5. Error and order of accuracy of the 3rd order scheme on Taylor-Couette flow.
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Figure 8. Contours of u velocity and Mach number (dashed circle indicates location of sliding interface).

cells L1 error order L2 error order

192 8.79E-6 - 1.30E-5 -

768 6.10E-7 3.85 9.39E-7 3.79

3072 4.81E-8 3.76 7.41E-8 3.73

Table 6. Error and order of accuracy of the 4th order scheme on Taylor-Couette flow.

The total computational time and the sliding interface communication time are shown in Table 7 and
Table 8 for third and fourth order schemes. Again, data in both tables are collected for 100 computational
steps and do not include any post-processing time. It is seen that for viscous flow simulation the sliding-mesh
FR/CPR method remains very efficient.

cells total time comm. time percentage

192 0.942448 0.093744 9.93%

768 3.193459 0.217843 6.82%

3072 11.394474 0.468880 4.11%

Table 7. Total computation time and interface communication time (both in seconds) for 100 computational steps using

3rd oder scheme on Taylor-Couette flow.

cells total time comm. time percentage

192 1.373590 0.123075 8.96%

768 4.611803 0.280074 6.07%

3072 17.745552 0.640689 3.61%

Table 8. Total computation time and interface communication time (both in seconds) for 100 computational steps using

4th oder scheme on Taylor-Couette flow.

IV.C. Flow over a rotating elliptic cylinder

To further verify the solver, we simulate flow over a 2D elliptic cylinder in this section. Maruoka45 and
Zhang et al.46 studied incompressible flow over a rotating elliptic cylinder using Finite Element and Finite
Volume methods respectively. Both studies use Chimera grids for communication between foreground rotat-
ing mesh and background stationary mesh. To compare with the incompressible flow results, the freestream
Mach number is set to Ma = 0.05 to keep compressibility effects negligible for our sliding-mesh FR/CPR
computations.
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The major and minor axes are 1.0 and 0.5 for the elliptic cylinder. Initially, the major axis is parallel to
freestream. The cylinder rotates counterclockwisely at an angular speed of ω = 0.5π. The Reynolds number
based on freestream velocity and major axis length is 200. Figure 9 shows a schematic of the computational
domain. The top and bottom boundary conditions are slippery walls. Dirichlet boundary condition is used
for the inlet and fixed pressure is used at the outlet boundary. Finally, isothermal and no-slip conditions are
employed for the cylinder wall.

U∞

30.0 70.0

1
0
0
.0

sliding interface

r
=
1.5

inlet

outlet

1.0

0
.5

ω

Figure 9. Schematic of the computational domain for flow over a rotating elliptic cylinder (not to scale).

The inner rotating domain has a radius of 1.5 and is meshed with 1280 cells. The rest of the domain is
stationary and has 7391 cells in all. Mesh refinement are performed around the leading and trailing edges,
and in the wake region. Figure 10 shows part of the mesh around the cylinder and in the wake region a part
of the mesh on the left, and mesh close to the cylinder on the right. The first layer of the mesh around the
airfoil has a thickness of about 0.005, and the maximum aspect ration is around 2. The non-dimensional
time step size ∆tU∞/L for the simulation is set to 1.0 × 10−4, where L is the major axis and U∞ is the
freestream velocity.

Figure 10. Two local views of mesh around the elliptic cylinder (blue circle indicates sliding interface).

Both third and fourth order schemes were tested for this flow and no visible difference was observed
between two solutions. We only present results from the fourth-order scheme. As was noticed by Maruoka45

and Zhang et al.,46 the fully developed flow takes a periodic pattern as the cylinder rotates. The lift and
drag coefficients in one period are shown in Figure 11. It is seen that the present result agrees very well with
published results.

Figure 12 shows the streamlines superimposed on vorticity contours at a series of time in one rotating
period. A clockwise vortex and a counterclockwise vortex appear alternatively around two ends of the
cylinder. From (h) and (a), we see that a clockwise vortex is formed at the leading edge as the cylinder
rotates, and this vortex then sheds off from the leading edge and hits the trailing edge. From time instant
(b) to (d), the same clockwise vortex is again shed off from the trailing edge and then convected towards
downstream. From time instant (e) to (g), a counterclockwise vortex slowly emerges around the other end
of the cylinder and is then convected downstream without reattaching to the cylinder. This process repeats
as the cylinder rotates, and a vortex street forms downstream of the cylinder.

13 of 21

American Institute of Aeronautics and Astronautics



0 0.5 1 1.5 2

−4

−2

0

2

4

6

ωt/π

C
L
,
C

D

Present

Maruoka (2003)

Zhang et al. (2008)

CD

CL

Figure 11. Lift and drag coefficients for flow over an elliptic cylinder.

(a) t = 0 (e) t = 1
2T

(b) t = 1
8T (f) t = 5

8T

(c) t = 1
4T (g) t = 3

4T

(d) t = 3
8T (h) t = 7

8T

Figure 12. Streamlines and vorticity contours (blue means negative value, red means positive) for flow over a counter-
clockwise rotating elliptic cylinder (big circle is sliding interface).
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The efficiency of sliding-mesh FR/CPR method for this case is shown in Table 9. The results in the table
confirm our previous conclusion that the relative communication time generally decreases as the number
of cells or the order of scheme increases. In fact, the interface communication time in the table is almost
negligible comparing to the total computation time.

order total time comm. time percentage

3 30.943320 0.155668 0.50%

4 50.437870 0.201519 0.40%

Table 9. Total computation time and interface communication time (both in seconds) for 100 computational steps for
simulation of flow over an elliptic cylinder.

IV.D. Flow over a pitching airfoil

In this last test case, we apply the sliding-mesh FR/CPR method to study flow around a pitching airfoil at
various pitching angles. Profile of the airfoil is chosen as NACA0012 with a sharp trailing edge. The airfoil
is pitching around a point 1/3 chord away from the leading edge on the mean camber. The computational
domain has a size of 100c × 100c with the pitching center located 30c downstream to the inlet, where c is
the chord length. A sliding interface which has a radius of 2c divides the whole domain into two parts:
a stationary outer part; a moving inner part which undergoes a rigid body rotation with the airfoil. The
motion of the airfoil is given as θ(t) = α cos(2πft), where θ is the angle of attack at time t, α is the pitching
angle, f is the frequency and is set to 0.25. We study three pitching angles, α = 30◦, 60◦ and 90◦. The
freestream has a Mach number of Ma∞ = 0.2. Reynolds number based on freestream velocity and airfoil
chord length is Re = 1000.

Figure 13 shows two local views of the unstructured quadrilateral mesh for this case. The inner mesh
has a total number of 4600 cells, and the first layer of mesh on the airfoil has a thickness around 0.004c,
the maximum aspect ratio there is about 8. The outer domain is meshed into 5059 cells and the maximum
cell size is about 8c. Mesh is refined around the leading and trailing edges as well as in the wake region.
Fourth-order scheme with a time step size ∆tU∞/c = 2.0× 10−5 have been used for all tests.

Figure 13. Two local views of mesh around a NACA0012 airfoil (blue circle indicates sliding interface).
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IV.D.1. Results for α = 30◦
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Figure 14. Lift and drag coefficients for NACA0012 airfoil with pitching angle of 30◦.
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Figure 15. Vorticity contours at different phases for α = 30◦ (blue means negative value, red means positive) for flow
over a pitching airfoil (big circle is sliding interface).
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IV.D.2. Results for α = 60◦
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Figure 16. Lift and drag coefficients for NACA0012 airfoil with pitching angle of 60◦.
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Figure 17. Vorticity contours at different phases for α = 60◦ (blue means negative value, red means positive) for flow
over a pitching airfoil (big circle is sliding interface).
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IV.D.3. Results for α = 90◦
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Figure 18. Lift and drag coefficients for NACA0012 airfoil with pitching angle of 90◦.
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Figure 19. Vorticity contours at different phases for α = 90◦ (blue means negative value, red means positive) for flow
over a pitching airfoil (big circle is sliding interface).
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IV.D.4. Summary of results

From the above figures, it is seen that flows at different pitching angles take obviously different patterns,
but they also share similarities. From lift and drag coefficients in Figure 14, 16 and 18, we see that all three
flows are almost periodic, with their periods close to that of pitching. It’s also interesting to notice that for
each pitching angle, CD changes almost twice as fast as CL. Beside the large periodic patterns, the flows also
carry structures varying at different frequencies, which are reflected on CL and CD curves as small peaks.
For the amplitude of CL and CD, it’s seen that they both increase as the pitching angle increases. Finally,
at all three pitching angles, the airfoil experiences a positive mean drag. For α = 30◦ and 60◦, the mean lift
is close to 0, while at α = 90◦, the airfoil experiences a negative mean lift.

From the vorticity contours in Figure 15, 17 and 19, we see that, when the pitching angle is small (α =
30◦), flow in the wake region are very organized: the airfoil sheds off a pair of clockwise or counterclockwise
vortices alternatively. These vortex pairs are so coherent that the interactions between any two pairs are
not obvious. At large pitching angles, the airfoil still sheds off a pair of vortices alternatively, one of them
originate for the leading edge, the other from the trailing edge. However, the occurrences of two successive
vortex pairs are so close that they interact with each other strongly. These strong interactions between
vortex pairs in the wake region make the flow very complicated.

As for all previous cases, we monitored the efficiency of sliding-mesh FR/CPR method for this case.
The results are shown in Table 10. Again, as can be seen from the table, the method is very efficient with
negligible communication time.

order total time comm. time percentage

3 33.404480 0.246506 0.73%

4 48.823478 0.309867 0.63%

Table 10. Total computation time and interface communication time (both in seconds) for 100 computational steps for
simulation of flow over a pitching airfoil.

V. Conclusions

In this paper, a novel, simple, efficient, and high-order accurate sliding-mesh interface method is re-
ported for subsonic compressible flows. The baseline numerical method is the FR/CPR method for spatial
discretization. We have successfully designed the sliding-mesh FR/CPR method and test it for several invis-
cid and viscous flow problems. The method maintains high-order accuracies of FR/CPR method in terms
of spatial discretizations for both inviscid and viscous flows using unstructured grids with all quadrilateral
elements. This new sliding-mesh interface treatment is very efficient because it introduces negligible extra
computational cost to the FR/CPR method for realistic flow simulations. This high-order curved sliding-
mesh interface method can also be extended to other discontinous high-order methods for compressible
flows. The curved sliding-mesh interface method will likely see a wide range of future applications, such as
simulation of flow around propellers, flapping wing power generator, rotorcraft aerodynamics, etc.
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